INSTITUTE OF ENGINEERING

DEPARTMENT OF MECHANICAL

ENGINEERING

ENGINEERING DRAWING I [TUTORIAL SHEETS]

2061

CONTENTS

Sheet No. 1: Technical Lettering 3
Sheet No. 2: Plane Geometrical Construction 5
Sheet No. 3: Descriptive Geometry I 7
Sheet No. 4: Descriptive Geometry IISheet No. 5: Orthographic Drawings I15
Sheet No. 6: Orthographic Drawings II 17
Sheet No. 7: Sectional And Auxiliary Views 19
Sheet No. 8: Development Of Surfaces I 21
Sheet No. 9: Development Of Surfaces II 22
Sheet No. 10: Intersection Of Solids 23
Sheet No. 11: Orthographic And Sectional Views 25
Sheet No. 12: Freehand Sketching 26

ENGINEERING DRAWING I
 SHEET NO: 1

(TECHNICAL LETTERING)

1. Write down alphabets (A to Z) of different size in

- Vertical capital
- Inclined capital
- Vertical small, and
- Inclined small letters.

2. Write down vertical and inclined numerals (0 to 9) and fractions different size.
3. Draw the following lines with 100 mm length

- Visible outline
- Hidden
- Center
- Projection
- Cutting plane
- Break

4. Dimension the following figures. Size may be obtained by measuring the drawing.

Figure T1.4

51	S. N.	DESCRIPTION	QTY.	MATERIAL	REMARK
51	DRAWN BY		NAME OF THE INSTITUTE		
5	ROLL NO				
5	CHKD BY				
10	TITLE				
51	SCALE			SHEET NO.	
5	DATE				
5	METRIC SYSTEM				

ENGINEERING DRAWING I

SHEET NO: 2

(PLANE GEOMETRICAL CONSTRUCTION)

1. (a) Draw a 50 mm line and trisect it.
(b) Draw an angle of 75° and trisect it.
(c) Draw a line whose length is greater than 50 mm and divide the same into 7 equal parts and proportionately in the ratio of 1:2:3.
2. (a) Construct a regular hexagon with 66 mm distance across flats.
(b) Construct a regular octagon with 80 mm distance across corners.
(c) Draw a regular pentagon on a circumscribing circle of 60 mm diameter.
3. (a) Draw circular arc of radius 20 mm tangent to two lines which are inclined at 45°, 90° and 120° to each other.
(b) Draw a line AB of any length. Mark a point O at a distance of 25 mm from AB . With O as a center, draw a circle of 40 mm diameter. Describe another circle (i) of 20 mm radius, touching circle and AB ; (ii) of 35 mm radius, touching AB and the circle, and including the circle within it.
(d) Draw two horizontal lines 50 mm apart. Locate two points 75 mm apart horizontally, one on each line. Draw an ogee (reverse) curve tangent to these lines.
4. Reconstruct the Figure Shown in Figure T2.4 (a) and T2.4 (b).

5. Draw an ellipse with major minor axis of 90 mm and 60 mm respectively.
6. Draw a parabola with double ordinate 100 mm and axis 60 mm .
7. The distances between the focii and between the vertices of a hyperbola are 100 mm and 60 mm respectively. Construct the hyperbola.
8. Draw a locus of a point on the circumference of a circle of radius 35 mm for one complete rotation when it rolls on a horizontal surface.
9. Draw an involute of circle having diameter of 50 mm .
10. Draw one turn of a helix of pitch 60 mm on a cylinder of diameter 40 mm .
11. Draw an Archemedian's spiral of one convolution of radius 100 mm .

ENGINEERING DRAWING I

SHEET NO: 3

(DESCRIPTIVE GEOMETRY I)

1. Draw the projections of the following points.
(a) Point A, 25 mm infront of VP and 30 mm above HP.
(b) Point B, 32 mm infront of VP and in the HP.
(c) Point C, 22 mm behind VP and 28 mm above HP.
(d) Point D, 35 mm behind VP and in the HP.
(e) Point E, 28 mm behind VP and 30 mm below HP.
(f) Point F, in the VP and 40 mm below HP.
(g) Point G, 20 mm infront of VP and 25 mm below HP.
(h) Point H, in the VP and HP.
2. Draw the projections of the following lines:
(a) Line AB, 45 mm long, parallel to HP and VP both, when its distance from HP and VP is 25 mm and 30 mm respectively.
(b) Line CD, 45 mm long, perpendicular to HP and 20 mm away from VP, when one of its extremities nearer to HP is 10 mm away from the HP .
(c) Line EF, 45 mm long, contained by HP, and perpendicular to VP, when one of its extremities is 10 mm away from the VP.
(d) Line GH, 50 mm long, parallel to VP and inclined to HP at 30°, when one of its ends is 15 mm from HP and 20 mm from the VP.
(e) Line IJ, 50 mm long, contained by HP and inclined to VP at 45°, when one of its ends is 15 mm from the VP.
(f) Line KL, 40 mm long contained by both the HP and the VP.
3. Draw the projections of the line MN when its end M is 10 mm from HP and 15 mm from VP and end N is 30 mm from HP and 40 mm from VP. Its end projectors are 40 mm apart.
4. The front view of a line, inclined at 30° to the VP is 65 mm long. Draw the projections of the line, when it is parallel to and 40 mm above the HP , its one end being 30 mm in front of the VP.
5. A 90 mm long line is parallel to and 25 mm in front of the VP. Its one end is in the HP while the other is 50 mm above the HP. Draw its projections and find its inclination with the HP.
6. A square lamina ABCD , of 25 mm side is parallel to HP and is 10 mm from it. Its side nearer to VP is parallel to and 10 mm from VP. Draw its projections.
7. A rectangle $\mathrm{ABCD} 60 \mathrm{~mm} \times 40 \mathrm{~mm}$ is parallel to HP with one of its sides inclined at 30° to VP and the end of the side near to VP is 15 mm in front of the VP and 30 mm above the HP. Draw its projections.
8. A regular pentagon ABCDE 20 mm side has its corner A in HP and the side CD parallel to the HP. Draw its projections when its plane is parallel to and 10 mm from the VP.
9. A square lamina ABCD of 30 mm side is perpendicular to VP and inclined to HP at 45°. It rests on its side BC in HP. Draw its projections when corner point C is 12 mm infront of the VP.
10. A regular pentagon $A B C D E$, of 25 mm side, has its side $B C$ in $H P$. Its plane is perpendicular to the HP and inclined at 45° to the VP. Draw the projections of the pentagon when its corner nearest to VP is 10 mm from it.
11. Draw the projections of a thin circular sheet of 50 mm diameter and negligible thickness, when its plane is inclined at 45° to VP and is perpendicular to HP. A point on it circumference and nearest to the VP is 40 mm away from the HP and 14 mm from the VP.

ENGINEERING DRAWING I
 SHEET NO: 4

(DESCRIPTIVE GEOMETRY II)

1. A line $A B 75 \mathrm{~mm}$ long is inclined at 45° to the HP and 30° to the $V P$. Its end B is in the HP and 40 mm in front of the VP. Draw its projections.
2. Draw the projections of a line $\mathrm{AB}, 90 \mathrm{~mm}$ long, its midpoint M being 50 mm above the HP and 40 mm in front of the VP. The end A is 20 mm above the HP and 10 mm in front of the VP.
3. The top view of a 75 mm long line measures 65 mm while the length of its front view is 50 mm . Its one end is in the HP and 12 mm in front of the VP. Draw the projections of AB and determine its inclinations with the HP and the VP.
4. A line 65 mm long has its one end 20 mm above the HP and 25 mm in front of the VP. The other end is 40 mm above the HP and 65 mm in front of the VP. Draw the projections of the line and determine its inclinations with the HP and the VP.
5. Reproduce the given view of the lines and determine the true lengths using the auxiliary view method.

6. Reproduce the given view of the lines and determine the true lengths using the revolution method.

7. Determine the shortest distance between the point C and line AB .
8. Reproduce the given views of the plane and draw the view showing the true size and shape.

Figure T4.7

Figure T4.8 (a)

Figure T4.8 (b)
9. Determine the angle between the line MN and non-transparent plane ABC . Also determine the visible portion of the line.
10. Determine the shortest distance between the lines MN and ST .
11. Determine the angle between the planes ABC and BCD .

ENGINEERING DRAWING I
 SHEET NO: 4

(DESCRIPTIVE GEOMETRY II)

12. A line $A B 75 \mathrm{~mm}$ long is inclined at 45° to the $H P$ and 30° to the VP. Its end B is in the HP and 40 mm in front of the VP. Draw its projections.
13. Draw the projections of a line $A B, 90 \mathrm{~mm}$ long, its midpoint M being 50 mm above the HP and 40 mm in front of the VP. The end A is 20 mm above the HP and 10 mm in front of the VP.
14. The top view of a 75 mm long line measures 65 mm while the length of its front view is 50 mm . Its one end is in the HP and 12 mm in front of the VP. Draw the projections of AB and determine its inclinations with the HP and the VP.
15. A line 65 mm long has its one end 20 mm above the HP and 25 mm in front of the VP. The other end is 40 mm above the HP and 65 mm in front of the VP. Draw the projections of the line and determine its inclinations with the HP and the VP.
16. Reproduce the given view of the lines and determine the true lengths using the auxiliary view method.

17. Reproduce the given view of the lines and determine the true lengths using the revolution method.

18. Determine the shortest distance between the point C and line $A B$.
19. Reproduce the given views of the plane and draw the view showing the true size and shape.

20. Determine the angle between the line MN and non-transparent plane ABC . Also determine the visible portion of the line.
21. Determine the shortest distance between the lines MN and ST.
22. Determine the angle between the planes ABC and BCD .

ENGINEERING DRAWING I

SHEET NO: 5

(ORTHOGRAPHIC DRAWINGS I)
The figures for Problems T5.1 to T5.12 contain a number of pictorial views of pieces of various shapes. Translate them into three-view orthographic drawings.

Figure T5.5

Figure T5.6

ENGINEERING DRAWING I

SHEET NO: 6

(ORTHOGRAPHIC DRAWINGS II)

Make a complete orthographic drawing (with necessary number of projections) of each model and dimension it.

Through Hole 20 Dia

ENGINEERING DRAWING I

SHEET NO: 7

(SECTIONAL AND AUXILAIRY VIEWS)

1. Draw the views of the objects given below with sectional front view.

2. Draw the views of the objects given below with sectional front view and sectional side view.

3. Draw the half sectional front view, half sectional side view and top view for the given object.

4. Draw the front view, the top view, and the normal view of the inclined surfaces for objects given below.

Figure T7.4 (a)

Figure T7.4 (b)

ENGINEERING DRAWING I

SHEET NO: 8

(DEVELOPMENT OF SURFACES I)

Make a complete orthographic drawing of a geometrical solid cut by a plane. Find the true shape of the section. Construct the development of the surface of the solid.

Figure T8.1

Figure T8.4

Figure T8.2

Figure T8.3

Figure T8.5

Figure T8.6

ENGINEERING DRAWING
 SHEET NO: 9

(DEVELOPMENT OF SURFACES II)

1. A right circular cone is cut as shown in Figure T9.1. Develop its lateral surface.
2. Two views of right regular hexagonal prism cut at both end by section planes and resting on its lower cut end on ground are shown in Figure T9.2. Develop its lateral surface.
3. Develop the lateral surface of a cylindrical piece shown in Figure T9.3.

Figure T9.1

Figure T9.2

Figure T9.3
4. Two views of an oblique, truncated rectangular pyramid are shown in Figure T9.4. Develop its lateral surface.
5. Figure T9.5 and T9.6 show parts of oblique cone. Develop the surfaces.

ENGINEERING DRAWING I
 SHEET NO: 10

(INTERSECTION OF SOLIDS)

Draw the given views of assigned form and complete the intersection. Then develop the lateral surfaces.

ENGINEERING DRAWING I

SHEET NO: 11

(ORTHOGRAPHIC AND SECTIONAL VIEWS)

1. Construct and dimension three projections of a model with a vertical section.

2. Construct and dimension three projections of a model with a horizontal section.

ENGINEERING DRAWING I
 SHEET NO: 12

(FREEHAND SKECTHING)
3. Sketch, freehand, the following one view drawings.

4. Sketch the required views of the objects given below.

5. Sketch the pictorial view from the orthographic views given.

Hame

Figure T12.3(a)
Figure T12.3(c)

