
ITC213: STRUCTURED
PROGRAMMING

Bhaskar Shrestha
National College of Computer Studies

Tribhuvan University

Lecture 13: Data Files

Readings: Chapter 12

© Bhaskar Shrestha 3

Data Files

• Can be created, updated, and processed by C programs

• Are used for permanent storage of large amounts of data
– Storage of data in variables and arrays is only temporary

– Information stored in a data file can be accessed and altered
whenever necessary

• All operations between files and your programs are
carried out by C I/O functions

© Bhaskar Shrestha 4

Program Input/Output

• A C program keeps data in RAM in the form of variables
• Data can come from some location external to the

program
– Data moved from an external location into RAM, where the

program can access it, is called input
– Keyboard and disk files are the most common sources of

program input
• Data can also be sent to a location external to the

program; this is called output
– The most common destinations for output are the screen, a

printer, and disk files

© Bhaskar Shrestha 5

I/O Devices
• Input sources and output destinations are collectively referred to

as devices
• The keyboard is a device, the screen is a device, and so on
• Some devices (the keyboard) are for input only, others (the

screen) are for output only, and still others (disk files) are for both
input and output

• Input sources and output destinations are collectively referred to
as devices

• The keyboard is a device, the screen is a device, and so on
• Some devices (the keyboard) are for input only, others (the

screen) are for output only, and still others (disk files) are for both
input and output

© Bhaskar Shrestha 6

Streams (1/2)

• Whatever the device, and whether it’s performing input
or output, C carries out all input and output operations
by means of streams

• A stream is a sequence of bytes of data
– A sequence of bytes flowing into a program is an input stream
– A sequence of bytes flowing out of a program is an output

stream
• Advantages of Streams

– By focusing on streams, you don’t have to worry as much
about where they’re going or where they originated

– With streams, input/output programming is device independent

© Bhaskar Shrestha 7

Streams (2/2)
– Programmers don’t need to write special input/output functions

for each device (keyboard, disk, and so on)
• Every C stream is connected to a file
• In this context, the term file doesn't refer to a disk file

– Rather, it is an intermediate step between the stream that your
program deals with and the actual physical device being used
for input or output

• Because streams are largely device independent, the
same function that can write to a disk file can also write
to another type of device such as console

• C streams fall into two modes: text and binary

© Bhaskar Shrestha 8

Text Streams
• A text stream consists of sequence of characters, such as text

data being sent to the screen
• Text streams are organized into lines, which can be up to 255

characters long and are terminated by an end-of-line, or newline,
character

• Certain characters in a text stream are recognized as having
special meaning, such as the newline character

• In a text stream, certain character translations may occur as
required by the host environment
– For example, a newline may be converted to a carriage return/linefeed pair

© Bhaskar Shrestha 9

Binary Streams

• A binary stream is a sequence of bytes
• A binary stream can handle any sort of data, including,

but not limited to, text data
• Bytes of data in a binary stream aren’t translated or

interpreted in any special way; they are read and written
exactly as-is

• In text stream, end of file is determined by a special
character having ASCII value 26, but in binary stream
end of file is determined by the directory listing of host
environment

© Bhaskar Shrestha 10

Predefined Streams

• ANSI C has three predefined streams

• These streams are automatically opened when a C program starts
executing and are closed when the program terminates

• All standard streams are text streams

• Whenever you have used the printf or puts functions to display
text on-screen, you have used the stdout stream

• Likewise, when you use gets
or scanf to read keyboard input,
you use the stdin stream

ScreenStandard errorstderr
ScreenStandard outputstdout
KeyboardStandard inputstdin
DeviceStreamName

© Bhaskar Shrestha 11

File System Basics

• The C File system is composed of several interrelated
functions

• The header <stdio.h> provides the prototypes for the I/O
functions and defines these three types: size_t, fpos_t
and FILE

• Also defined in <stdio.h> are several macros
– NULL, EOF, FOPEN_MAX, SEEK_SET, SEEK_CUR,

SEEK_END etc

© Bhaskar Shrestha 12

Commonly Used C File-System
Functions

Flushes a filefflush

Returns true if an error has occurredferror

Returns true if end-of-file is reachedfeof

Is to a file what scanf is to the consolefscanf

Is to a file what printf is to the consolefprintf

Writes a string to a filefputs

Reads a string from a filefgets

Reads a character from filegetc, fgetc

Writes a character to a fileputc, fputc

Closes a filefclose

Opens a filefopen

FunctionName

© Bhaskar Shrestha 13

Files

• In C, a file may be from a disk file to a terminal or printer

• You associate a stream with a specific file by performing an open
operation

• Once a file is open, information can be exchanged between it and
your program
– You can read from or write to the file

• You disassociate a file from a specific stream with a close
operation
– When you are done working with the file, you must close the file

© Bhaskar Shrestha 14

Opening a File
• The process of creating a stream linked to a disk file is called

opening the file
• When you open a file, it becomes available for reading, writing, or

both
• The fopen function opens a stream for use and links a file with

that stream
– FILE* fopen(const char *filename,const char *mode);

– filename is pointer to a string that make up a valid filename and may
include a path specification

– mode is pointer to string that determines how the file will be opened

• On successful, fopen returns the file pointer associated with that
file

• If fopen fails to open a file, by any reason, it returns NULL

© Bhaskar Shrestha 15

The File Pointer

• A file pointer is a pointer to a structure of type FILE
• It points to information that defines various things about

the file
– File name, status, current position in the file etc

• The file pointer identifies a specific file and is used by
the associated stream to direct operation of the I/O
functions

• In order to read or write files, your program needs to use
file pointers

• To obtain a file pointer by calling the fopen function

© Bhaskar Shrestha 16

Legal Values for Mode

Open an existing file for both reading and appending. A new file will be
created if the file with the specified name does not exist.

a+

Open a new file for both reading and writing. If a file with specified
name exists, it will be destroyed and a new file will be created

w+

Open an existing file for both reading and writingr+

Opens an existing file for appending. A new file will be created if the
specified file doesn’t exists. New data is appended to the end of the file.

a

Open a new file for writing only. If a file with the specified name exists,
it will be destroyed and a new file is created

w

Opens an existing file for reading onlyr

MeaningMode

Add b to specify binary mode. Default is text mode

© Bhaskar Shrestha 17

fopen Examples

FILE *fp;

fp = fopen("c:\\test.txt", "w");

if (fp == NULL) {

printf("Cannot open file\n");

exit(1);

}

FILE *fp;

fp = fopen("c:\\test.txt", "r+");

if (fp == NULL) {

printf("Cannot open file\n");

exit(1);

}

Creates a new file
C:\test.txt for writing

Opens the file c:\test.txt,
both for reading and
writing

© Bhaskar Shrestha 18

Closing a File

• When you’re done using the file, you must close it

• The fclose function closes a stream that was opened by a call to
fopen

– int fclose(FILE *fp);

– where fp is the file pointer returned by the call to fopen

– Returns 0 if file is successfully closed

– Returns EOF is an error occurs

• When a file is closed, it flushes the buffer and does a formal OS
level close

• Failure to close a stream may include lost data

© Bhaskar Shrestha 19

FILE *fp;

char filename[80];

char mode[4];

char response;

do

{

/* input filename and mode */

printf("Enter filename: ");

scanf(" %[^\n]", filename);

printf("Enter mode to open: ");

scanf("%s", mode);

/* try to open the file */

fp = fopen(filename, mode);

if (fp != NULL) /* success? */

{

printf("Successfully opened %s in %s mode\n", filename, mode);

fclose(fp); /* we don't do anything to the file, so close it */

}

else

printf("Failed to open %s in %s mode\n", filename, mode);

printf("Another (Y/N): ");

scanf(" %c", &response);

} while (response == 'Y' || response == 'y');

© Bhaskar Shrestha 20

Writing and Reading to a File (1/2)

• A program that uses a disk file can write data to a file,
read data from a file, or a combination of the two

• You can write data to a disk file in three ways:
• Character output

– to save single characters or lines of characters to a file
– Use only with text files
– main use of character output is to save text (but not numeric)

data in a form that can be read by C, as well as other programs
such as word processors

• Formatted output
– to save formatted data to a file

© Bhaskar Shrestha 21

Writing and Reading to a File (2/2)
– use formatted output only with text-mode files
– primary use of formatted output is to create files containing

text and numeric data to be read by other programs such as
spreadsheets or databases

– Don’t use if you want to read the data back by a C program
• Direct/Unformatted output

– to save the contents of a section of memory directly to a disk
file

– Use for binary streams only
– direct output is the best way to save data for later use by a C

program

© Bhaskar Shrestha 22

Character Output: putc

• C I/O defines two equivalent functions that output a
character: putc and fputc

• The putc Function
– writes a single character to a specified stream

• int putc(int ch, FILE *fp);

– ch is the character to output (only the low order byte is used)
– fp is the pointer associated with

the file
– returns the character just written

if successful or EOF if an error
occurs

ch = getchar();
while (ch != EOF) {

putc(ch, fp);
ch = getchar();

}

© Bhaskar Shrestha 23

Character Output: fputs

• Use to write a line of characters to a stream
– Unlike puts, it doesn’t add a newline to the end of the string

• The fputs function
– int fputs(char *str, FILE *fp);

– str is a pointer to the null-terminated string to be written
– fp is the pointer to type FILE returned by fopen
– The string pointed to by str is

written to the file
– Returns a nonnegative value if

successful or EOF on error

gets(line);
while (*line != '\0') {
strcat(line, "\n");
fputs(line, fp);
gets(line);

}

© Bhaskar Shrestha 24

Character Input: getc

• The functions getc and fgetc are identical and can be
used interchangeably

• They input a single character from the specified stream
– int getc(FILE *fp);

– The argument fp is the pointer returned by fopen when the
file is opened

– The function returns the
character that was input
or EOF on error

ch = getc(fp);
while (ch != EOF) {
putchar(ch);
ch = getc(fp);

}

© Bhaskar Shrestha 25

Character Input: fgets
• Use fgets to read a line of characters from a file

– char *fgets(char *str, int n, FILE *fp);

– str is a pointer to a buffer in which the input is to be stored
– n is the maximum number of characters to be input, and
– fp is the pointer to type FILE that was returned by fopen when the file

was opened

• fgets reads characters from fp and stores in str
• Characters are read until a newline is encountered or until n-1

characters have been read, whichever occurs first
• If a newline is read, it will be part of string
• The resultant string is null terminated
• Returns str on successful and NULL, if an error occurs

© Bhaskar Shrestha 26

FILE *fp;

char filename[80];

char buffer[256], str[256];

int lineno;

...

fp = fopen(filename, "r");

...
printf("Enter string to search: ");

gets(str);

lineno = 1;

fgets(buffer, 255, fp); /* read a line */

while (!feof(fp)) {

if (strstr(buffer, str) != NULL)

printf("Line %d: %s\n", lineno, buffer);

fgets(buffer, 255, fp);

lineno++;

}

fclose(fp);

Searching for a text in a file

© Bhaskar Shrestha 27

Formatted Output: fprintf
• Formatted file output is done with the library function fprintf

– int fprintf(FILE *fp, char *fmt, ...);

– Here, fp is a file pointer returned by a call to fopen
– fmt is the format string
– ... means, in addition to fp and fmt arguments, fprintf takes zero,

one, or more additional arguments.
• These arguments are the names of the variables to be output to the specified

stream

• fprintf works just like printf, except that it sends its output
to the stream fp specified in the argument list

• fprintf returns the number of characters actually printed. If an
error occurs, a negative number is returned

© Bhaskar Shrestha 28

FILE *fp;

float array[5] = {10.2, 5.0, 5.55, 6.005, 135};

int i;

fp = fopen("test.txt", "w");

if (fp == NULL) {

printf("Unable to open output file test.txt\n");

exit(1);

}

fprintf(fp, "Here are the %d values of the array:\n", 5);

for (i = 0; i < 5; i++)

fprintf(fp, "array[%d] = %f\n", i, array[i]);

fclose(fp); After the program is run, the file test.txt contains

Here are the 5 values of the array:
array[0] = 10.200000
array[1] = 5.000000
array[2] = 5.550000
array[3] = 6.005000
array[4] = 135.000000

© Bhaskar Shrestha 29

Formatted Input: fscanf
• For formatted file input, use the fscanf library function

– int fscanf(FILE *fp, const char *fmt, ...);

– fp is the pointer to type FILE returned by fopen
– fmt is a pointer to the format string that specifies how fscanf is to read the

input
– the ellipses (...) indicate one or more additional arguments, the addresses

of the variables where fscanf is to assign the input.

• The function fscanf works exactly the same as scanf, except that
characters are taken from the specified stream rather than from
keyboard

• fscanf returns the number of arguments that were actually
assigned values. A return value of EOF means that a failure
occurred before the first assignment was made

© Bhaskar Shrestha 30

FILE *fp;

char s[80];

int t;

fp = fopen("test.txt", "w");

if (fp == NULL) {

printf("Cannot open file\n");

exit(1);

}

printf("Enter a string and number: ");

scanf("%s%d", s, &t);

fprintf(fp, "%s %d", s, t); /* write to file */

fclose(fp);

fp = fopen("test.txt", "r");

if (fp == NULL) {

printf("Cannot open file\n");

exit(1);

}

fscanf(fp, "%s%d", s, &t); /* read from file */

printf("%s %d", s, t);

This program reads a string and an
integer from the keyboard and writes
them to a disk file called test.txt. The
program then reads the file and
displays the information on the
screen. After running the program,
examine the test.txt file. As you will
see, it contains human-readable text.

© Bhaskar Shrestha 31

Direct (Unformatted) I/O

• Use direct file I/O, when you want save data to be read
later by the same or a different C program

• Direct I/O is used only with binary-mode files

• With direct output, blocks of data are written from
memory to disk

• Direct input reverses the process:
– A block of data is read from a disk file into memory

• The direct I/O functions are fread and fwrite

© Bhaskar Shrestha 32

The fwrite function
• The fwrite library function writes a block of data from memory

to a file
– int fwrite(void *buf, int size, int count, FILE
*fp);

– buf is a pointer to the first byte of memory holding the data to be written to
the file

– size specifies the size, in bytes, of the individual data items, and count
specifies the number of items to be written

– fp is the pointer to type FILE, returned by fopen when the file was
opened

• The fwrite function returns the number of items written on
success; if the value returned is less than count, it means that an
error has occurred

© Bhaskar Shrestha 33

fwrite examples
double x = 12e-6;
/* write a double value x */
fwrite(&x, sizeof(double), 1, fp);

int arr[10];
...
/* write an array arr*/
fwrite(arr, sizeof(int), 10, fp);

struct address addr[50], myaddr;
...
/* write a structure variable myaddr*/
fwrite(&myaddr, sizeof(struct address), 1, fp);
/* write the entire structure array addr */
fwrite(addr, sizeof(struct address), 50, fp);

© Bhaskar Shrestha 34

The fread function
• The fread library function reads a block of data from a file into

memory
– int fread(void *buf, int size, int count, FILE
*fp);

– buf is a pointer to the first byte of memory that receives the data read from
the file

– size specifies the size, in bytes, of the individual data items being read,
and count specifies the number of items to read

– fp is the pointer to type FILE that was returned by fopen when the file
was opened

• The fread function returns the number of items read; this can be
less than count if end-of-file was reached or an error occurred

© Bhaskar Shrestha 35

fread examples
double x;
/* read a double value x */
fread(&x, sizeof(double), 1, fp);

int arr[10];
...
/* read an array arr*/
fread(arr, sizeof(int), 10, fp);

struct address addr[50], myaddr;
...
/* read a structure variable myaddr*/
fread(&myaddr, sizeof(struct address), 1, fp);
/* read entire structure array addr */
fread(addr, sizeof(struct address), 50, fp);

© Bhaskar Shrestha 36

File Buffer

• When a stream linked to a disk file is created, a buffer is
automatically created and associated with the stream

• A buffer is a block of memory used for temporary
storage of data being written to and read from the file

• Buffers are needed because disk drives are block-
oriented devices, which means that they operate most
efficiently when data is read and written in blocks of a
certain size

• The size of the ideal block differs, depending on the
specific hardware in use

© Bhaskar Shrestha 37

Use of Buffer
• Buffer serves as an interface between the stream and the disk

hardware
• As a program writes data to the stream, the data is saved in the

buffer until the buffer is full, and then the entire contents of the
buffer are written, as a block, to the disk

• An analogous process occurs when reading data from a disk file
• During program execution, data that a program wrote to the disk

might still be in the buffer, not on the disk
– If your program hangs up, if there's a power failure, or if some other

problem occurs, the data that's still in the buffer might be lost, and you
won't know what's contained in the disk file

© Bhaskar Shrestha 38

Flushing Buffer (1/2)

• For a output stream, flushing buffer means writing the
buffered data to the file and clearing it contents

• For an input stream, flushing buffer means clearing its
buffer contents

• To flush a buffer contents use fflush
– int fflush(FILE* fp);

– fp is a file pointer to stream, whose buffer is to be flushed
– Returns 0 if successful, EOF otherwise
– If fp is NULL, all files opened for output are flushed

© Bhaskar Shrestha 39

Flushing Buffer (2/2)

• The buffer is automatically flushed, when a stream is
closed with a call to fclose

• All opened files are automatically closed when the
program terminates normally, hence all opened streams
are flushed

• Use flushall to flush the buffers of all open streams
– int flushall(void);

– returns the number of open streams

© Bhaskar Shrestha 40

Sequential Versus Random File Access (1/2)

• Every open file has a file position indicator associated
with it

• Position indicator specifies where read and write
operations take place in the file

• The position is always given in terms of bytes from the
beginning of the file
– When a new file is opened, the position indicator is always at

the beginning of the file, position 0
– When an existing file is opened, the position indicator is at the

end of the file if the file was opened in append mode, or at the
beginning if the file was opened in any other mode

© Bhaskar Shrestha 41

Sequential Versus Random File Access (2/2)

• Input/output functions make use of the position indicator
• Writing and reading operations occur at the location of

the position indicator and update the position indicator
as well

• For example, if you open a file for reading, and 10 bytes
are read, you read the first 10 bytes in the file (the bytes
at positions 0 through 9). After the read operation, the
position indicator is at position 10, and the next read
operation begins there

© Bhaskar Shrestha 42

The ftell and fseek function

• Use ftell and fseek to determine and change the value of the
file position indicator

• By controlling the position indicator, you can perform random file
access
– Here, random means that you can read data from, or write data to, any

position in a file without reading or writing all the preceding data

• The ftell function
– long ftell(FILE *fp);

– Returns the location of the current position of the file associated with fp.

– If a failure occurs, returns -1

© Bhaskar Shrestha 43

The fseek function

• The fseek function sets the file position indicator
• int fseek(FILE *fp, long numbytes, int
origin);

– fp is a file pointer returned by fopen

– numbytes is the number of bytes from origin, which will
become the end current position

– origin can be one of the
macros shown in the table

SEEK_ENDEnd of file
SEEK_CURCurrent Position
SEEK_SETBeginning of file
Macro NameOrigin

© Bhaskar Shrestha 44

Examples of ftell and fseek
long pos;
/* seek 0 bytes from beginning of file */
fseek(fp, 0, SEEK_SET);
pos = ftell(fp);
printf("%ld\n", pos); /* prints 0 */

/* seek 0 bytes from end of file */
fseek(fp, 0, SEEK_END);
pos = ftell(fp);
printf("%ld\n", pos); /* prints file size in bytes */

/* seek –pos bytes from current position */
fseek(fp, -pos, SEEK_CUR);
pos = ftell(fp);
printf("%ld\n", pos); /* prints 0 why? */

© Bhaskar Shrestha 45

Other file related functions

Resets the file position indicator to beginning of filerewind

Deletes a fileremove

Changes the name of an existing filerename

Opens an existing opened file in another modefreopen

Puts a character in the buffer, such that it can be obtained
from next read operation

ungetc

Generates a unique filenametmpnam

Opens a temporary file for reading/writingtmpfile

Sets the buffer to use or turns off bufferingsetbuf

Moves the file position indicatorfsetpos

Gets the current value of file position indicatorfgetpos

Resets the error flag of the associated streamclearerr

FunctionName

