
ITC213: STRUCTURED
PROGRAMMING

Bhaskar Shrestha
National College of Computer Studies

Tribhuvan University

Lecture 12: Structures

Readings: Chapter 11

© Bhaskar Shrestha 3

Structures (1/2)

• A structure is a collection of one or more variables,
possibly of different types, grouped together under a
single name for convenient handling

• Structures are called “records” in some languages,
notably Pascal

• Structures help to organize complicated data, particularly
in large programs

• They permit a group of related variables to be treated as
a unit instead of as separate entities

© Bhaskar Shrestha 4

Structures (2/2)

• A structure is a collection of variables referenced under
one name, providing a convenient means of keeping
related information together

• Structures are one of the ways to create a custom data
type in C

• Variables that make up the structure are called members
– Also commonly referred to as elements or fields

• Individual members of a structure can be any of C’s data
types
– including arrays, pointers and other structure variables

© Bhaskar Shrestha 5

Structure Declarations

• The first thing you need to do while using structures is to
declare a structure type

• A structure declaration describes a template or shape of
a structure
– It defines the type and name of all of its members it is going

include

• A structure declaration is identified by the struct
keyword, followed by an identifier known as structure
tag
– This structure tag is later used to define structure variables

© Bhaskar Shrestha 6

Example of structure declaration
• A structure declaration to represent information about a student’s

name and other details
• struct student
{

int id;
char name[30];
char sex;
float marks[7];
float total;
float per;
int result;

};

• Here, struct is the required keyword and student is the
structure tag used to identify this structure

© Bhaskar Shrestha 7

Structure Variables

• A structure declaration only defines the form of the data;
it does not allocate memory

• A structure variable is a variable of a structure type

• To declare a variable of type student, defined earlier,
write
– struct student st;

– This declares a variable of type struct student called
st. Thus, student describes the form of a structure (its
type), and st is an instance (a variable) of the structure

© Bhaskar Shrestha 8

Structure Variable in Memory

• When a structure variable (such as st) is declared, the compiler
automatically allocates sufficient memory to accommodate all of
its members

name 30 bytes

id 2 bytes

sex 1 byte

marks 28 bytes

total 4 bytes

percentage 4 bytes

result 2 bytes

The structure variable st in
memory. Although not shown,
all the members are stored
contiguously in memory

© Bhaskar Shrestha 9

More on Structure Declarations (1/2)

• You can also declare one or more variable when you declare a
structure. For example,
– struct student
{
int id;
char name[30];
char sex;
float marks[7];
float total;
float per;
int result;

} a, b, c;

– defines a structure type called student and declares three variables a, b
and c of that type

• Each structure variable (a, b, and c) contains its own copies of
the structure’s members

© Bhaskar Shrestha 10

More on Structure Declarations (2/2)

• If you only need one structure variable, the structure tag
can be omitted. For example,
– struct
{

int id;
char name[30];
char sex;
float marks[7];
float total;
float per;
int result;

} st;

– declares one variable named st as defined by the structure
preceding it

© Bhaskar Shrestha 11

General Form of Structure Declaration

• The general form of a structure declaration is
– struct tag
{
type member-name;
type member-name;
type member-name;
.
.
.

} structure-variables;

– where either tag or structure-variables may be omitted, but not
both

• A structure member or tag and an ordinary variable can have
the same name without conflict

• The same member names may occur in different structures

© Bhaskar Shrestha 12

Structure Declaration Examples
/* declare a structure template to represent a bank account */
struct bankaccount
{

int acct_no; /* account no. */
char acct_type; /* type of account:

'C' for current, 'S' for savings, 'F' for fixed */
char name[80]; /* account holder's name */
float balance; /* the current balance */

};
/* now declare variables of type struct bankaccount */
struct bankaccount myaccount, friendsaccount;
/* myaccount and friendsaccount are structure variables */

/* declare a structure and instance together */
struct date
{

int m, d, y;
} current_date; /* current_date is a structure variable */

© Bhaskar Shrestha 13

Operations on Structure Variables

• The only legal operations on structure variables are
– copying it or assigning to it as a unit

– taking its address with &, and

– accessing its members

• Besides these, no other operations on structure variables
are defined
– For e.g., structures variables may not be compared

© Bhaskar Shrestha 14

Accessing Structure Members

• The members of a structure are usually processed
individually, as separate entities

• A structure member can be accessed by writing
– variable.member

– where variable refers to the name of structure-type
variable, and member refers to the name of a member within a
structure

• The period(.) that separates the structure variable name
from the member name is called the dot or structure-
member operator

© Bhaskar Shrestha 15

Example on Accessing Structure
Members

• The following statement assigns the id 1001 to the id
member of the structure variable st declared earlier:
– st.id = 1001;

• Therefore, to print the id of st on the screen, write
– printf("%d", st.id);

• The character array st.name can be used in a call to
gets(), as shown here:
– gets(st.name)

– This passes a character pointer to the start of name member of
the structure variable st

© Bhaskar Shrestha 16

More Examples

• Since name is a character array, you can access the
individual characters of st.name by indexing name

• For example, you can print the contents of st.name one
character at a time by using the following code:
– for(i = 0; st.name[i] != '\0'; ++i)

putchar(st.name[i]);

– Notice that it is name (not st) that is indexed
• The code fragment calculates the total marks obtained by
st:
– st.total = 0;
for (i = 0; i < 7; i++)
st.total += st.marks[i];

© Bhaskar Shrestha 17

The dot operator

• The dot operator is a member of the highest precedence
group, thus it will take precedence over the unary
operators as well as the various arithmetic, relational,
logical and assignment operators

• Thus, an expression of the form
– ++variable.member is equivalent to ++(variable.member)
– &variable.member is equivalent to &(variable.member)

• accesses the address of the structure member, not the starting address of
the structure variable

© Bhaskar Shrestha 18

More Examples

Access the address of third element of
st.marks

&st.marks[2]

Access the address of st.id&st.id

Access the beginning address of st&st

Decrement the value of st.id--st.id

Increment the value of st.id after
accessing its valuest.id++

Increment the value of st.id++st.id

InterpretationExpression

© Bhaskar Shrestha 19

Structure Assignments (1/2)
• Members contained in one structure variable can be assigned to

another structure variable of the same type using a single
assignment

• You do not need to assign the value of each member separately
• For example, consider the following structure declaration:
• struct bankaccount

{
int acct_no;
char acct_type;
char name[80];
float balance;

};

• Now if you declare two variables of type struct bankaccount as
shown:
– struct bankaccount newaccount, oldaccount;

© Bhaskar Shrestha 20

Structure Assignments (2/2)

• The following statement causes each member of
oldaccount to be assigned to the corresponding
member of newaccount:
– newaccount = oldaccount; /* assign one structure
to another */

• This has the effect of copying each member individually,
as shown:
– newaccount.acct_no = oldaccount.acct_no;
newaccount.acct_type = oldaccount.acct_type;
strcpy(newaccount.name, oldaccount.name);
newaccount.balance = oldaccount.balance;

– Note that name is an array of characters representing a string.
You must use strcpy() to copy strings

© Bhaskar Shrestha 21

Nested Structures

• Recall, members of a structure can be variables of any of the valid
data types

• Since structure is a custom type, you can define structure variable
as a member of another structure
struct time {

int hrs, mins;
};
struct date {

int m,d,y;
};
struct flightschedule {

int flightno;
struct time departuretime;
struct time arrivaltime;
struct date scheduledate;

};

Here the structure variables
departuretime, arrivaltime,
and scheduletime are members
of the structure flightschedule.
These are said to be nested within
the structure flightschedule.
The declaration of time and date
must precede the declaration of
flightschedule.

© Bhaskar Shrestha 22

Accessing Nested Structure Members

• Now suppose, you declare a structure variable named myflight
of type flightschedule as shown:
– struct flightschedule myflight;

• To access the hrs of departuretime member of myflight,
you must apply the dot operator twice

• For example, the following statement assigns 9 to hrs member of
departuretime:
– myflight.departuretime.hrs = 9;

• Moreover, this value can be incremented by writing
– ++myflight.departuretime.hrs

© Bhaskar Shrestha 23

Initializing Structure Variables

• To initialize structure variables, list the values for the individual
members separated by commas and enclosed in braces

• The initial values must appear in the order in which they will be
assigned to their corresponding structure members
struct bankaccount
{

int acct_no;
char acct_type;
char name[80];
float balance;

} myaccount = {1001, 'C', "Binod Chapagain", 12000.0};

myaccount is a structure variable of type bankaccount, whose members
are assigned initial values. acct_no is assigned the integer value 1001,
acct_type is assigned the character 'C', name[80] is assigned the
string "Binod Chapagain", and balance is assigned 12000.011

© Bhaskar Shrestha 24

Array of Structures
• Since you can create an array of any valid type, it is possible to define an array

of structures; i.e., an array in which each element is a structure
• To declare an array of structures, you must declare a structure and then declare

an array variable of that type

struct student
{

int id;
char name[30];
float marks[7];
float total;
float per;
int result;

};

/* array of structures */
struct student studlist[100];

This creates 100 sets of variables that
are organized as defined in the
structure student. Each element in
the array studlist is a structure of
type student and is identified by
subscript like other array element
types

To access a specific structure, you
index the array name, studlist. For
example to print the id of 3rd student,
write:

printf("%d", studlist[2].id);

© Bhaskar Shrestha 25

typedef
• The typedef keyword is used to create a synonym or alias of an

existing data type
• This process can help make machine-dependent programs more

portable
– If you define your own type name of each machine-dependent data type

used by you program, then only the typedef statements have to be
changed when compiling for new environment

• The general form of the typedef statement is
– typedef type newname;

– where type is any valid type, and newname is the new name for the new
name for this type. The new name you defined is in addition to, not a
replacement for, the existing type name

© Bhaskar Shrestha 26

typedef Examples
• You could create a new name for float by using

– typedef float balance;

– Now the compiler will recognize balance as another name for float

• Next, you could create a float variable using balance:
– balance over_due;

– Here, over_due is a floating-point variable of type balance, which is
another word for float

• Now that balance has been defined, it can be used in another
typedef. For example,
– typedef balance overdraft;

– tells the compiler to recognize overdraft as another name for
balance, which is another name for float

© Bhaskar Shrestha 27

More Examples
• The declarations

– typedef float height[100];
height men, women;

– defines height as a 100-element, floating-point array type—hence, men
and women are 100-element, floating-point arrays

• Another way to express this is
– typedef float height;
height men[100], women[100];

– though the former declaration is somewhat simpler

• You can also use typedef for pointers
– typedef int * iptr;
iptr p;

– defines iptr as an integer pointer, hence p is an integer pointer

© Bhaskar Shrestha 28

typedef and Structures
• The typedef feature is particularly convenient when defining structures

– it eliminates the need to repeatedly write the struct tag whenever a structure is
referenced

• The following statements define traveltime as a synonym for the indicated
structure
– struct time

{
int hrs;
int mins;

};
typedef struct time traveltime;

• Now traveltime can be used in place of struct time. Hence, the
following two declarations are equivalent.
– struct time day1;

traveltime day1; /* same as preceding statement */

© Bhaskar Shrestha 29

More typedef Structures
• You can use the typedef keyword to create a synonym for
struct tag within the structure declaration

• In general terms, a user-defined structure type can be written as
– typedef struct tag
{

member1;
member2;
...;
member1;

} newname;

– where newname is the user-defined structure type. The tag is optional in
this case

typedef struct time
{

int hrs;
int mins;

} traveltime;

Now, traveltime is another name for
struct time. The structure tag time
could have been omitted

© Bhaskar Shrestha 30

Passing Structure Members to Functions

• Individual structure members can be passed to functions
• When a structure member is passed to the function, the value of the member is

passed
• In the function, each structure member is treated the same as an ordinary single-

valued variable
float adjust(char name[], int acct_no, float balance, char type)
{

...
}

main()
{

struct bankaccount acc;
...
/* pass individual members to the function */

acc.balance = adjust(acc.name,acc.acct_no,acc.balance,acc.balance);
...

}

Note for acc.name, it is the address of
acc.name[0] that is passed. For other members,
it is the value of the members that are passed to
function. It is irrelevant in the function adjust
that structure members were passed

© Bhaskar Shrestha 31

Passing Structure Variables to Functions

• A single structure variable can be passed to functions at
once

• A structure variable is passed to a function using the
normal call-by-value mechanism
– This means that a copy of the structure variable is passed and

any changes made to the contents of the parameter inside the
function do not affect the structure passed as the argument

• When a structure variable is passed to a function, the
formal parameter in the function must be declared as the
same structure type passed

© Bhaskar Shrestha 32

struct bankaccount
{

int acct_no;
char acct_type;
char name[80];
float balance;

};

void ShowAccount(struct bankaccount acc);

main()
{
struct bankaccount myaccount={101,'C',"Binod Chapagain",100.0};
...
/* pass the structure variable myaccount */
ShowAccount(myaccount);

}

void ShowAccount(struct bankaccount acc)
{
...

}

© Bhaskar Shrestha 33

Returning Structure Variables from
Functions

• Entire structure variable may be returned from a function

• To do this, the return type of the function must be a
structure type

• When a structure variable is returned from the function,
a copy of the variable is returned which can be assigned
to another structure variable in the calling function

© Bhaskar Shrestha 34

struct time {
int hrs, mins;

};

/* function prototypes */
struct time addtime(struct time t1, struct time t2);
void printtime(struct time t);

main()
{

struct time day1 = {4, 30}, day2 = { 5, 45};
struct time totaltime;

totaltime = addtime(day1, day2);
printtime(totaltime);

}

/* function to add to time values */
struct time addtime(struct time t1, struct time t2)
{

struct time total;
total.mins = t1.mins + t2.mins;
total.hrs = t1.hrs + t2.hrs + total.mins/60;
total.mins %= 60;
return total; /* return a structure variable */

}

© Bhaskar Shrestha 35

Pointer to a Structure Variable

• C allows pointers to structures just as it allows pointers to any
other type of variable

• Like other pointers, structure pointers are declared by placing * in
front of the structure variable name

• For example
– struct banckaccount *pAccount;

– declares pAccount as pointer to a structure variable of type struct
bankaccount

© Bhaskar Shrestha 36

Using Structure Pointers
• To initialize a structure pointer, use the & operator to get the address of a

structure variable
– struct bankaccount acc, *pAcc;

– pAcc = &acc;

• Now pAcc is a pointer to a structure of type bankaccount, and *pAcc is
pointed structure variable (acc)

• (*pAcc).acct_no is the acct_no member of the pointed structure
variable, acc
– The parentheses are necessary in (*pAcc).acct_no because the precedence of

the structure member operator . is higher then *
– The expression *pAcc.acct_no means *(pAcc.acct_no), which is illegal

here because acct_no is not a pointer

© Bhaskar Shrestha 37

The arrow pointer
• Pointers to structures are so frequently used that an alternative

notation is provided as a shorthand
• If p is a pointer to a structure, then

– p->member-of-structure

– refers to the particular member

• The ->, usually called the arrow operator, is used to access a
structure member through a pointer to structure

• Hence
– pAcc->acct_no is same as (*pAcc).acct_no

© Bhaskar Shrestha 38

Using Structure Pointer
struct bankaccount
{

int acct_no;
char acct_type;
char name[80];
float balance;

};

main()
{

struct bankaccount acc = {1001, 'C', "Binod Chapagain",
12000.0};

struct bankaccount *pAcc;

pAcc = &acc;

printf("Account No: %d\n", pAcc->acct_no);
printf("Account Type: '%c'\n", pAcc->acct_type);
printf("Account Holder'name: %s\n", pAcc->name);
printf("Current Balance: %f\n", pAcc->balance);

}

© Bhaskar Shrestha 39

Use of Structure Pointers
• There are two primary uses for structure pointers:

– To pass a structure to a function using a call by reference
– To create linked lists and other dynamic data structures that rely on

dynamic allocation

• There is one major drawback to passing structure variables to
functions: the overhead needed to creating a copy and passing it to
the function
– For simple structures, this overhead is not too great
– If the structure contains many members, run-time performance may degrade

to unacceptable levels

© Bhaskar Shrestha 40

Passing Structure Pointers

• The solution is to pass a pointer to the structure

• When a structure pointer is passed to a function, only the address
of a structure variable is actually passed to the function. This
makes very fast function calls

• A second advantage is that passing a pointer makes it possible for
the function to modify the contents of the structure used as the
argument

© Bhaskar Shrestha 41

struct bankaccount {
int acct_no;
char acct_type;
char name[80];
float balance;

};

void adjust(struct bankaccount *pAcc);
main()
{

struct bankaccount acc = {1001, 'S', "Binod Chapagain", 12000.0};

adjust(&acc); /* pass a pointer to the structure variable acc */

printf("Account No: %d\n", acc.acct_no);
printf("Account Type: '%c'\n", acc.acct_type);
printf("Account Holder'name: %s\n", acc.name);
printf("Current Balance: %f\n", acc.balance);

}

void adjust(struct bankaccount *pAcc)
{

float interest = 0;
if (pAcc->acct_type == 'S')

interest = pAcc->balance*0.12;
pAcc->balance += interest;

}

© Bhaskar Shrestha 42

Dynamically Allocated Structures

• The most important use of structure pointer is with dynamically
allocated structures

• You can dynamically allocate memory for a structure variable
with the malloc() function and assign the returned address by
malloc() to a structure pointer variable

• To calculate the memory required by a structure use the sizeof
operator
– struct bankaccount *pAccount;

pAccount = malloc(sizeof(struct bankaccount));

© Bhaskar Shrestha 43

void main()
{
struct bankaccount *pAccount;

/* allocate memory for a structure variable */
pAccount = (struct bankaccount *) malloc(sizeof(struct bankaccount));

printf("Enter account no. : ");
scanf("%d", &pAccount->acct_no);
printf("Enter account type (S - Savings, C - Current, F - Fixed) ");
scanf(" %c", &pAccount->acct_type);
printf("Enter account holder's name: ");
scanf(" %[^\n]", pAccount->name);
printf("Enter initial balance: ");
scanf("%f", &pAccount->balance);

printf("Account No.: %d\n", pAccount->acct_no);
printf("Account Type: %c\n", pAccount->acct_type);
printf("Account Holder's Name: %s\n", pAccount->name);
printf("Current Balance: Rs. %.2f\n", pAccount->balance);

/* release the memory allocated with malloc */
free(pAccount);

}

Note that malloc() returns pointer of type void. But
the variable pAccount is a pointer of type struct
bankaccount. So the type cast is done to convert void
* to struct bankaccount *

© Bhaskar Shrestha 44

Unions

• union

– Memory that contains a variety of objects over time
– Only contains one data member at a time
– Members of a union share space
– Conserves storage
– Only the last data member defined can be accessed
– The size required by a union variable is the size required by the

member requiring the largest size

© Bhaskar Shrestha 45

Union Declarations

• Same as struct
– union number {

int i;
float f;

};
union number value;

• The variable value in memory

Byte 0 Byte 1 Byte 2 Byte 3

i

f

© Bhaskar Shrestha 46

Operations on Union Variables

• Skipped

• Same as with structures

• Remember that only the value of the last defined member will be
valid
– value.i = 100;
value.f = 102.5;
value.i = 200;

– Now only the i member of value will be valid

© Bhaskar Shrestha 47

Self-Referential Structures

• A self-referential structure is a structure in which at least one of
the member is a pointer to the parent structure type

• For example
– struct node {

char name[40];
struct node *next;

};

– This structure contains two members: a 40-element character array, called
item and a pointer to a structure of the same type (a pointer to a structure
of type node), called next

• Useful in applications that involve dynamic data structures, such
as lists and trees

