
ITC213: STRUCTURED
PROGRAMMING

Bhaskar Shrestha
National College of Computer Studies

Tribhuvan University

Lecture 11: Pointers

Readings: Chapter 10

© Bhaskar Shrestha 3

Introduction (1/2)

• The correct understanding and use of pointers is crucial
to successful C programming

• Reasons
– Pointers provide the means by which functions can modify

their calling arguments
– Pointers provides the necessary support for dynamic memory

allocation
– Pointers can improve the efficiency of certain routine

involving arrays
– Pointers provide support for dynamic data structures, such as

linked lists and binary trees

© Bhaskar Shrestha 4

Introduction (2/2)

• Pointers
– A variable that holds a memory address

– Powerful, but difficult to master

– Simulate call-by-reference

– Close relationship with arrays and strings

© Bhaskar Shrestha 5

The Computer’s Memory (1/2)

• PC’s RAM consists of many thousands of contiguous
memory locations, and each location is identified by a
unique address

• The memory addresses range from 0 to a maximum
value

• Operating system uses some of the system’s memory

• A program while running uses some of the memory for
the program code and data

© Bhaskar Shrestha 6

The Computer’s Memory (2/2)

• Amount of memory required to store a data depends on
the type of data

• For each variable declared,
– compiler sets aside a memory location

– the address is unique

– compiler associate’s the variable name with the address

– proper memory location is automatically accessed when you
refer a variable

© Bhaskar Shrestha 7

A variable in memory

A variable rate stored at a specific memory address 1004 with
value 100

1000 1001 1002 1003 1004 1005

100

rate

© Bhaskar Shrestha 8

Creating a Pointer

• Address of a variable is a number and can be treated like
any other number in C

• If you know a variable’s address, you can access the
value stored there
– The address of a variable can accessed using the & operator

(for e.g., &rate)

• For this, you can create a second variable in which to
store the address of the first

• This type of variable is called a pointer variable

© Bhaskar Shrestha 9

Creating a Pointer

• Creating a pointer
– declare a variable to hold the address of rate and

name it prate
– store the address of the variable rate in the variable
prate

•prate = &rate;

– Now, prate points to rate, or is a pointer to rate

• A pointer is a variable that stores the memory
address , possibly, of another variable

© Bhaskar Shrestha 10

A pointer variable in memory

1000 1001 1002 1003 1004 1005

100

rate

1004

prate

The variable prate contains the address of the variable rate and
is therefore a pointer to rate

© Bhaskar Shrestha 11

Declaring Pointer Variables
• type *ptrname;

• where type is the base type of the pointer and may be any valid
data type

• The name of the pointer variable is specified by ptrname
• The asterisk (*) is the indirection operator, and it indicates that

ptrname is a pointer to type type and not a variable of type
type

char *ch1, *ch2;

float *value, percent;

ch1 and ch2 both are pointers to type
char
value is a pointer to type float, and
percent is an ordinary float variable

© Bhaskar Shrestha 12

Initializing Pointers

• You cannot do anything until you assign a pointer
variable a valid address

• Uninitialized pointers are disastrous
• Use the address-of & operator to get the address of a

variable and assign it to a pointer variable
– int rate, *prate;
prate = &rate;

– prate gets the address of rate, prate points to rate
• & is a unary operator, which returns the address of its

operand

© Bhaskar Shrestha 13

The Indirection Operator (Getting
Pointed to value)

• When the indirection operator * precedes the name of a
pointer variable, it refers the value of the variable
pointed to

• Writing
– printf("%d", rate);

is same as printf("%d", *prate);
• Accessing the contents of a variable by using the

variable name is called direct access (reference)
• Accessing the contents of a variable by using a pointer to

the variable is called indirect access (reference) or
indirection

© Bhaskar Shrestha 14

The Indirection Operator

1000 1001 1002 1003 1004 1005

100

rate

1004

prate
*prate

Use of the indirection operator with pointers

© Bhaskar Shrestha 15

Basic Pointer Usage

int rate = 100;
int *prate; /* Declare a pointer to int */

prate = &rate; /* initialize prate to point to rate */

/* Access rate directly and indirectly */
printf("Direct access, rate = %d\n", rate);
printf("Indirect access, rate = %d\n", *prate);

/* Display the address of rate two ways */
printf("\nThe address of rate = %p\n", &rate);
printf("The address of rate = %p\n", prate);

Use %p to print address in the
format used by the host OS

© Bhaskar Shrestha 16

Use of *

• * is a unary operator and can only be used with pointer
variables

• If prate points to rate (i.e., prate = &rate),
then an expression such as *prate can be used
interchangeably with its corresponding variable rate

• Thus * can be used for assignment
– *prate = 200;

Indirectly changes the value of rate to 200

© Bhaskar Shrestha 17

Use of Indirection Operator

int v = 100;
int *pv;
int u1, u2, u3;

u1 = 2 * (v + 5); /* ordinary expression */

pv = &v; /* make pv point to v */
u2 = 2 * (*pv + 5); /* equivalent expression */

pv = u1; / change value of v to u1(210) */
u3 = 2 * (*pv + 5);

printf("v = %d, *pv = %d\n", v, *pv);
printf("u1 = %d, u2 = %d, u3 = %d\n", u1, u2, u3);

© Bhaskar Shrestha 18

Quiz

• Given
– int v = 100;

int *pv = &v;
• What is the value of v after

– ++ *pv;
and *pv ++;

• and what is the value of
– &*pv;
– *&v;

101, *pv is incremented

No change, pv is incremented, unary
operators are evaluated from right to left

The address of v (&v == pv)

The value of v (i.e., 100), * and & cancel each other

© Bhaskar Shrestha 19

Pointers and Variable Types

• Different variable types occupy different amounts of
memory
– char takes 1 byte, int takes 2 bytes and float take 4 bytes

• How pointers handle the addresses of multi-byte
variables?
– The address of a variable is actually the address of the first

(lowest) byte it occupies

© Bhaskar Shrestha 20

Pointers and Variable Types

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016

125 90 1200.156004

vint
vchar

vdouble

pvint

(2 bytes starting
at 1000)

pvchar

(1 byte starting
at 1005)

pvdouble

(8 bytes starting at
1008)

int *pvint = &vint;

char *pvchar = &vchar;

double *pvdouble = &vdouble;

Each pointer is equal to the address
of the first byte of the pointed-to
variable. Thus, pvint equals 1000,
pvchar equals 1005, and pvdouble
equals 1008

© Bhaskar Shrestha 21

The Pass by Value Mechanism

• C passes arguments to functions by value
• Recall in a call by value mechanism, if a parameter is altered

within a function, the alteration of parameter will not alter its
corresponding argument in the function call

• Consider the function call
– swap(a, b);

• Because of call by value,
swap can’t affect the arguments
a and b in the routine that called it
The function on the left swaps
copies of a and b

void swap(int x, int y)
{

int temp;
temp = x;
x = y;
y = temp;

}

© Bhaskar Shrestha 22

Pass by Reference

• To create a pass by reference
– you need to pass the address of the variable

• swap(&a, &b);

– create a pointer variable in the formal parameter to receive the
address passed

– use the pointer variable in the function to modify the original
argument void swap(int *px, int *py)

{
int temp;
temp = *px;
*px = *py;
*py = temp;

}

© Bhaskar Shrestha 23

Pass by Reference

void swap(int *px, int *py)
{

int temp;
temp = *px;
*px = *py;
*py = temp;

}

int a=10, b=20;
swap(&a, &b);
printf(“%d %d”, a, b);

In Caller In Swap

10 20 &a &b

*px *py

a b

px py

© Bhaskar Shrestha 24

Another Example

• Q: Write a function that given a string s, returns the no.
of vowels, consonants, digits, whitespaces and other
characters in it

• Ans:
– The function needs to return multiple values

– Recall, a function can’t return multiple values

– You can use pointer arguments to return multiple values

– For this function, we have 6 arguments, 5 for count and 1 for
the string s

© Bhaskar Shrestha 25

void scan_line(char [], int *, int *, int *, int *, int *);

main()
{
char line [80];
int vowels = 0, consonants = 0, digits = 0, whitespc = 0, other = 0;
printf("Enter a line of text below:\n");
scanf(" %[^\n]", line);
scan_line(line, &vowels, &consonants, &digits, &whitespc, &other);
/* now print the value of each counter */

}

void scan_line(char s[], int *pv, int *pc, int *pd, int *pw, int *po)
{
char c; /* uppercase character */
int count = 0; /* character counter */
while ((c = toupper(s[count])) != '\0') {
if(c =='A' || c =='E' || c =='I' || c =='O' || c =='U') ++ *pv;
else if (c >= 'A' && c <= 'Z') ++ *pc;
else if (c >='0' && c <= '9') ++ *pd;
else if (c == ' ' || c == '\t') ++ *pw;
else ++ *po;
++count;
}

}

vowels consonants digits whitespc other

pv pc pd pw po

In main

In scan_line

© Bhaskar Shrestha 26

Passing Arrays to Functions Revisited (1/2)

• Recall
– an array name is actually a pointer to the first element of the

array
– the array name represents the address of the first element in the

array
– Therefore, an array name is treated as a pointer when it is

passed to a function
• An array name that appears as a formal parameter within

a function definition can be declared either as a pointer
or as an array of unspecified size

• The formal parameter is actually a pointer rather than an
array

© Bhaskar Shrestha 27

Passing Arrays to Functions Revisited (2/2)

• For example, the following program fragment passes the address of x to
func1():

• int main()
{

int x[10];
func1(x);
/* ... */

}

• Hence, to receive x, a function called func1() can be declared as

• Both specify x as an integer pointer. First actually uses a pointer. The second
simply that an array of type int of some length is to be received

void func1(int *x)
{

/* ... */
}

void func1(int x[])
{

/* ... */
}

OR

© Bhaskar Shrestha 28

Returning Pointers from Functions

• You can return a pointer, i.e. the address of some variable, from a
function

• To return a pointer, a function must be declared as having a
pointer return type

double *scan(double []);

main()
{

double x[100];
double *p;

p = scan(x);
}

double *scan(double z[])
{

double *pf;
...
/* process elements of z */
pf =;
return pf;

}

Scan returns a double pointer,
So the return type double *

© Bhaskar Shrestha 29

Using the const Qualifier with Pointers

• const qualifier: variable cannot be changed
– Use const if function does not need to change a variable
– Attempting to change a const variable produces an error

• const pointers
– Point to a constant memory location
– Must be initialized when declared
– int *const myPtr = &x;

• Type int *const – constant pointer to an int
– const int *myPtr = &x;

• Regular pointer to a const int
– const int *const Ptr = &x;

• const pointer to a const int

• x can be changed, but not *Ptr

© Bhaskar Shrestha 30

Pointer Expressions

• In general, expressions involving pointers conform to the
same rules as other expressions

• We’ll see pointer expressions such as
– Assignments of one pointer variable to another
– Conversions between different types of pointer variables, and
– Arithmetic operations on pointer variables
– Pointer Comparison

© Bhaskar Shrestha 31

Pointer Assignments

• You can use a pointer on the right-hand side of an
assignment statement to assign its value to another
pointer
– int x = 99;
int *p1, *p2;
p1 = &x;
p2 = p1;

– Now both p1 and p2 point to x, you can use both p1 and p2
to access x

© Bhaskar Shrestha 32

Pointer Assignments

int x = 99, y = 100;
int *p1, *p2;

p1 = &x;
p2 = p1;

/* print the value of x twice */
printf("Value at p1 and p2: %d %d\n", *p1, *p2);

/* print the address of x twice */
printf("Addresses pointed to by p1 and p2: %p %p\n",

p1, p2);

p2 = &y; /* now make p2 point to y */
printf("Value at p1 and p2: %d %d\n", *p1, *p2);

© Bhaskar Shrestha 33

Pointer Conversions

• One type of pointer can be converted to another

• Use a cast to convert a pointer from one type to another

int x=258;
char *p;
p = (char *) &x;
printf("The first byte of x is %d\n", *p);
p++;
printf("The second byte of x is %d\n", *p);

Increments p, more about this later

© Bhaskar Shrestha 34

The void *
• Conversion between any type of pointer and void * does not

require a cast
• void * is a generic pointer

– Used to specify a pointer whose base type is unknown
– Allows a function to specify a parameter that is capable of receiving any

type of pointer argument without reporting a type mismatch
– Used to refer to raw memory (such as that returned by the malloc()

function)
– Cannot dereference a void *

int x = 100, y;
void *p;
p = &x; /* no need of cast */
y = *(int *)p; /* can’t apply * directly to p */
printf("value of y is %d\n", y);

© Bhaskar Shrestha 35

Pointer Conversion Problem

double x = 100.1, y;
int *p;

/* the next statement cause p (which is an
integer pointer) to point to a double. */

p = (int *) &x;

/* the next statement does not operate as expected. */
y = *p; /* attempt to assign y the value x through p */

/* the following statement won't output 100.1 */
printf("The (incorrect) value of x is %f\n", y);

Pointer operations are performed relative to the base type of the pointer
not by the type pointed to.

© Bhaskar Shrestha 36

The NULL Pointer

• In general, it does not make sense to assign an integer value to a
pointer variable

• However, you can assign a pointer variable the value 0 (without a
cast)
– Which means the pointer variable is currently not pointing to any variable

• The symbolic constant NULL is used in placed of 0

• #define NULL 0
float u, v;
float *pv = NULL; /* pv is not pointing to
any varible, so *pv should not be used */

© Bhaskar Shrestha 37

Pointer Arithmetic

• You can
– Add an integer to a pointer

– Subtract an integer from a pointer

– Subtract two pointers of same type

• The above operations are meaningless unless the
pointer variable points to an array element

• Besides these no other operations are allowed

© Bhaskar Shrestha 38

Pointer Addition
• Let p1 be an integer pointer with the current value of 1000. Also,

assume ints are 2 bytes long
• After the expression

– p1++;
p1 contains 1002, not 1001

• Each time p1 is incremented, it will point to the next integer
variable after 1000

• Hence, the expression
– p1--;

causes p1 to have the value 998
– p1 = p1 + 12;

makes p1 point to the 12th element of p1’s type beyond the one it currently
points to

© Bhaskar Shrestha 39

Pointer Addition

• All pointer arithmetic is
relative to its base type
(assuming 2-byte integers)

• Pointer arithmetic is used
only when a pointer variable
points to an array element

• In such case, the same pointer
variable can be made to point
to any element of the array

char *ch = (char *)1000;
int *p1 = (int *) 1000;

Address

1000

1001

1002

1003

1004

1005

1006

1007

1008

ch

ch+1

ch+2

ch+3

ch+4

ch+5

ch+6

ch+7

ch+8

p1

p1+1

p1+2

p1+3

p1+4

© Bhaskar Shrestha 40

int array[5] = {5,10,15,20,25};
int *p1;

p1 = &array[0]; /* you can also write p1 = array; */
printf("First element of the array --> ");
printf("Address: %p, value: %d\n", p1, *p1);

p1++;
printf("Second element of the array: --> ");
printf("Address: %p, value: %d\n", p1, *p1);

p1 = p1 + 3; /* you can also write p1 += 3; */
printf("Fifth element of the array: --> ");
printf("Address: %p, value: %d\n", p1, *p1);

p1--;
printf("Fourth element of the array: --> ");
printf("Address: %p, value: %d\n", p1, *p1);

p1 = p1 - 3;
printf("First element of the array --> ");
printf("Address: %p, value: %d\n", p1, *p1);

© Bhaskar Shrestha 41

Subtracting Pointers

• You can subtract one pointer from another in order to find the
number of objects of their base type that separate the two

• The two pointers must be of same type

• Use if the two pointers point to different elements of same array

int *px, *py;
int a[6] = {1, 2, 3, 4, 5, 6};

px = &a[0];
py = &a[5];
printf("px = %p, py = %p", px, py);
printf("\n\npy - px = %d\n", py - px); /* prints 5 */

© Bhaskar Shrestha 42

Pointer Comparisons
• Pointer variables can be compared provided both variables are of

the same data type
– Useful when both pointer variables point to elements of the same array
– Can test for either equality or inequality
– Can be compared with zero

• Let px and py point to elements of same array
– (px < py)

is px pointing to an element ahead of py?
– (px >= py)

is px pointing to an element after or to same as py?
– What do (px == py), (px != py) and (px == NULL) mean ?

© Bhaskar Shrestha 43

Relationship between an Array and a Pointer
(1/3)

• Arrays and pointers closely related
– Array name like a constant pointer

– Pointers can do array subscripting operations

• Recall that an array name without brackets is a pointer to the
array’s first element

• You can access the first array element using the indirection
operator

• If array[] is a declared array,
– the expression *array is the array’s first element, *(array + 1) is the

array’s second element, and so on

© Bhaskar Shrestha 44

Relationship between an Array and a Pointer
(2/3)

• If you generalize for the entire array, the following relationships
hold true:
– *(array) == array[0]

– *(array + 1) == array[1]

– *(array + 2) == array[2]

– ...

– *(array + n) == array[n]

• If p is pointer with
– p = array; /*p points to first element of array*/

© Bhaskar Shrestha 45

Relationship between an Array and a Pointer
(3/3)

• Then following relationships holds
– *p == array[0]

– *(p + 1) == array[1]

– *(p + 2) == array[2]

– ...

– *(p + n) == array[n]

– p == &array[0]

– p + 1 == &array[1]

• p[n] is same as *(p+n), and this is same as array[n]
• &p[n] is same as (p+n), and this is same as &array[n]
• Hence pointer notation and array notation can be used

interchangeably

© Bhaskar Shrestha 46

Example

int x[10] = {10, 11, 12, 13, 14, 15, 16, 17, 18, 19};
int i;

for (i = 0; i <= 9; ++i)
{

/* display an array element */
printf("i=%d x[i]= %d *(x+i)= %d",

i, x[i], *(x+i));

/* display the corresponding array address */
printf(" &x[i]=%p x+i=%p\n", &x[i], (x+i));

}

Uses both array and pointer notation to access array elements and their
addresses

© Bhaskar Shrestha 47

Extra Example

Both function below print the contents of the array x

void printarray(int x[], int n)
{

int i;
for (i = 0; i < n; i++)

printf("%d ", x[i]);
}

void printarray(int *x, int n)
{

int i;
for (i = 0; i < n; i++)

printf("%d ", *(x+i));
}

Array Notation

Pointer Notation

© Bhaskar Shrestha 48

Difference between Array and Pointer

• A pointer is a variable and it can change its value,
specifically it can point to different variables at different
time

• An array is a constant pointer, the address (which is
assigned by the compiler) it points to cannot be changed

• Given the declaration
– int x[10];
int *p;

– Constructions such as p = x and p++ is legal but x = p or
x++ are illegal

© Bhaskar Shrestha 49

Functions Receiving Arrays

• Recall when an array name is passed to a function, the address of
the first element is passed

• Within the function, this argument is a local variable, and so an
array name parameter is a pointer, that is, a variable containing an
address
int strlen(char *s)
{
int n;
for (n = 0; *s != '\0'; s++)

n++;
return n;

}

Since s is a pointer, s++ has
no effect on the character
string in the function that
called strlen, but merely
increments strlen's private
copy of the pointer

© Bhaskar Shrestha 50

More Example

int strlen(char *s)
{
char *p = s;
while (*p != '\0')

p++;
return p-s;

}

This strlen version uses pointers to find the length of the string

In its declaration, p is initialized to s,
that is, to point to the first character of
the string. In the while loop, each
character in turn is examined until the
'\0' at the end is seen. Because p points
to characters, p++ advances p to the
next character each time, and p-s gives
the number of characters advanced
over, that is, the string length.

© Bhaskar Shrestha 51

Passing part of an array
• It is possible to pass part of an array to a function, by passing a

pointer to the beginning of the subarray
• For example, if a is an array,

– func(&a[2]) and func(a+2)
– both pass to the function func the address of the subarray that starts at
a[2]

• Within func, the parameter declaration can read
– func(int arr[]) { ... } or
func(int *arr) { ... }

• So as far as func is concerned, the fact that the parameter refers to
part of a larger array is of no consequence

© Bhaskar Shrestha 52

Character Pointers and Strings
• Recall a string constant, written as "I am a string" is an

array of characters
• There is an important difference between these definitions:

– char amessage[] = "now is the time"; /* an array */
– char *pmessage = "now is the time"; /* a pointer */

• amessage is an array, just big enough to hold the string
• Individual characters within amessage may be changed but
amessage will always refer to the same storage

• pmessage is a pointer, initialized to point to a string constant
• pmessage may subsequently be modified to point elsewhere, but

the result is undefined if you try to modify the string contents

© Bhaskar Shrestha 53

Illustration

H e l l o \0

H e l l o \0

amessage

pmessage

char amessage[] = "Hello";
Char *pmessage = "Hello";

© Bhaskar Shrestha 54

Array of Pointers
• Since pointers are variables themselves, they can be stored in

arrays just as other variables can
• The declaration for an int pointer array of size 10 is

– int *x[10];
This statement creates 10 int pointers

• To assign the address of an integer variable called var to the third
element of the pointer array, write
– x[2] = &var;

• To find the value of var, write
– *x[2]

© Bhaskar Shrestha 55

Array of Strings

• Pointer arrays are often used to hold pointers to strings
• Example

– char *suit[4] = {
"Hearts",
"Diamonds",
"Clubs",
"Spades“

};

– Strings are pointers to the first character
– char * – each element of suit is a pointer to a char

© Bhaskar Shrestha 56

Illustration

e a r t s \0H

i a m o n d s \0D

l u b s \0C

p a d e s \0S

suit[0]

suit[1]

suit[2]

suit[3]

suit array

The strings are not actually stored in the array suit, only pointers to the strings are stored

char *suit[4] = { "Hearts", "Diamonds", "Clubs", "Spades" };

© Bhaskar Shrestha 57

Pointer to An Array

• Skipped, See Gottfried10.7

© Bhaskar Shrestha 58

Multiple Indirection
• You can create a pointer variable that stores the address of another

pointer variable
• This situation is called multiple indirection, or pointers to pointers
• The following declaration tells the compiler that q is a pointer of

type int *

– int **q;

• To access the target value indirectly pointed to by a pointer to a
pointer, you must apply the indirection operator twice

© Bhaskar Shrestha 59

Example
int x, *p, **q;

x = 10;
p = &x;
q = &p;

printf("%d", **q); /* print the value of x */

address of p address of x 10

Multiple Indirection

xq p

*q **q *p

© Bhaskar Shrestha 60

Dynamic Memory Allocation (1/2)

• Memory required by a program can be allocated by declaring
variables in program source code

• This is called static memory allocation

• This requires you to know when you’re writing the program
exactly how much memory you need

• Dynamic memory allocation is the means by which a program can
allocate memory at program runtime

• DMA allows the program to react, while it’s executing, to
demands for memory, such as user input

© Bhaskar Shrestha 61

Dynamic Memory Allocation (2/2)

• To allocate memory as required, C provides library
functions

• Dynamic memory is obtained from the heap
– The heap is free memory region that is not used by your

program, the operating system, or any other running program

• Global and static variables use the space of the program
code

• Local variables are allocated on the stack

© Bhaskar Shrestha 62

The malloc and free function
• The core of C’s allocation system consist of the function

malloc() and free()
• These functions work together using the free memory region to

establish and maintain a list of available storage
• The malloc() function allocates memory, and the free()

function releases it
– Each time malloc() memory request is made, a portion of the remaining

free memory is allocated
– Each time a free() memory release call is made, memory is returned to

the system

© Bhaskar Shrestha 63

The malloc function
• The malloc() function has this prototype:

– void *malloc(size_t n);

• Here,
– n is the number of bytes of memory you want to allocate. (The type
size_t is some type of unsigned integer).

• malloc() returns a pointer of type void *, which means that
you can assign it to any type of pointer

• After a successful call, malloc() returns a pointer to the first
byte of the region of memory allocated from the heap

• If there is not enough available memory to satisfy the malloc()
request, an allocation failure occurs and malloc() returns a
NULL

© Bhaskar Shrestha 64

Using malloc
• The code fragment shown here allocates 1,000 bytes of contiguous

memory:
– char *p;
p = malloc(1000); /* get 1000 bytes */

• After the assignment, p points to the first of 1,000 bytes of free
memory

• The next example allocates space for 50 integers.
– int *p;
p = malloc(50*sizeof(int));

• Once you get the memory, you can store data in the memory using
the pointer returned by malloc

© Bhaskar Shrestha 65

The free function
• The free() function is the opposite of malloc() in that it

returns previously allocated memory to the system
• Once the memory has been freed, it may be reused by a

subsequent call to malloc()
• The function free() has this prototype:

– void free(void *p);

• Here, p is a pointer to memory that was previously allocated using
malloc()

• It is critical that you never call free() with an invalid argument;
this will damage the allocated system

© Bhaskar Shrestha 66

Using malloc and free

int *p;

/* allocate space for an integer */
p = malloc(sizeof(int));

if (p == NULL) { /* there was no integer */
puts("Memory Exhausted");
exit(1); /* terminate the program */

}

p = 100; / store 100 in the newly allocated memory */

printf("Address returned by malloc is %p, "
"value stored there is %d\n", p, *p);

free(p); /* release the memory allocated by malloc */

© Bhaskar Shrestha 67

Dynamically Allocated Arrays

• Since
– the malloc() function returns a pointer to the first byte of

contiguous memory and

– array elements are stored contiguously in memory and

– also you can use a pointer to index array elements,

• You can create a dynamic array whose size need not be
specified in advance

© Bhaskar Shrestha 68

float *plist;
int i, n;
float sum=0;

printf("How many numbers? ");
scanf("%d", &n);

plist = malloc(sizeof(float)*n);

for (i = 0; i < n; i++) {
printf("Enter number %d: ", i+1);
scanf("%f", plist+i);
sum += *(plist+i);

}

printf("The sum of the numbers ");
for (i = 0; i < n; i++)

printf("%f ", *(plist+i));
printf("is %f", sum);

free(plist);

© Bhaskar Shrestha 69

Dynamically Allocated Array of Strings

• Skipped, See book Gottfried Sec. 10.8, page 309-
311

