
ITC213: STRUCTURED
PROGRAMMING

Bhaskar Shrestha
National College of Computer Studies

Tribhuvan University

Lecture 10: Arrays

Readings: Chapter 9

© Bhaskar Shrestha 3

Introduction

• Group of same type of variables that have same name

• Each item in the group is called an element of the array

• Each element is distinguished from another by an index

• All elements are stored contiguously in memory

• The elements of the array can be of any valid type-
integers, characters, floating-point types or user-defined
types

© Bhaskar Shrestha 4

Declaring an Array

• Declared as other variables, with the array size (total no
of elements) enclosed in square brackets

• Example
– int x[100];

• this creates an integer array named x with 100 elements

– char text[80];

• this creates a character array named text with 80 elements

• The size of the array specified must be a constant

© Bhaskar Shrestha 5

Arrays

• Each array elements are
distinguished with an index

• The index of first element is 0, the
second element has an index of 1
and so on. The last element has an
index of arraysize-1

• Example
– int c[12];

• this creates an array named c from c[0] to
c[11]

Name of array (Note
that all elements of
this array have the
same name, c)

Position number of
the element within
array c

c[6]

-45

6

0

72

1543

-89

0

62

-3

1

6453

78

c[0]

c[1]

c[2]

c[3]

c[11]

c[10]

c[9]

c[8]

c[7]

c[5]

c[4]

© Bhaskar Shrestha 6

Arrays in Memory

• The amount of storage required to hold an array is
directly related to its type and size
– total size of array in bytes = sizeof(base type) × length of array

• All arrays consist of contiguous memory locations
– the lowest address corresponds to the first element
– the highest address to the last element

Element a[0] a[1] a[3] a[4] a[5] a[6] a[7]
Address 1000 1002 1004 1006 1008 1010 1012

A seven-element integer array beginning at location 1000

© Bhaskar Shrestha 7

Manipulating Arrays

• Single operations that involve entire arrays are not permitted in C

• Each array must be manipulated on an element-by-element basis

• To access an element, specify the index of the element after array
name enclosed in square brackets
– Index must be an integral expression

• Array elements are like normal variables
c[0] = 3;

printf("%d", c[0]);

– Perform operations in subscript. If x equals 3
c[5 - 2] == c[3] == c[x]

© Bhaskar Shrestha 8

Array Manipulation Example
#define NUM 100

int grade[NUM];
int i, avg, sum = 0;

printf("Input scores:\n");
for (i=0; i<NUM; i++)

scanf("%d", &grade[i]);

for (i=0; i<NUM; i++)
sum = sum + grade[i];

avg = sum/ NUM;
printf("Average=%d\n", avg);

© Bhaskar Shrestha 9

/* Given the price and stock of 5 different bulbs,
calculate the total stock value */

int i, stock[5];
float price[5];
float total=0;

for (i=0; i < 5; i++)
{
printf("Enter stock of bulb %d: ", i+1);
scanf("%d", &stock[i]);

printf("Enter price of bulb %d: ", i+1);
scanf("%f", &price[i]);

total += stock[i]*price[i];
}
printf("The total stock value is %f\n", total);

© Bhaskar Shrestha 10

Array Bound Checking

• Array Bounds (index) are not verified neither at
compile-time nor at run-time

• Index must be within 0 and arraysize-1

• If not others data may be overwritten

int a=100,b[5],c=200;
int i;
for (i=0; i < 6; i++)

b[i] = i;
printf("a=%d, c=%d\n", a, c);

© Bhaskar Shrestha 11

Initializing Arrays

• Each array element can be initialized, when an array is
declared

• The initial values must appear in the order in which they
will be assigned to the individual array elements,
enclosed in braces and separated by commas

• Example
int digits[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

static float x[6] = {0, 0.25, 0, –0.50, 0, 0};

char color[3] = {'R', 'E', 'D'};

© Bhaskar Shrestha 12

/* The wattage problem */

int i, stock[5];
int watt[5] = {15,25,40,60,100};
float price[5];
float total=0;

for (i=0; i < 5; i++)
{
printf("Enter stock of bulb %d: ", watt[i]);
scanf("%d", &stock[i]);

printf("Enter price of bulb %d: ", watt[i]);
scanf("%f", &price[i]);

total += stock[i]*price[i];
}
printf("The total stock value is %f\n", total);

© Bhaskar Shrestha 13

More on Initialization
• When a list of initializers is shorter than the number of array elements to be

initialized, the remaining elements are initialized to zero
int digits[10] = { 3, 3, 3};

– the elements digits[3] to digits[9] will have value 0

• You can use quoted strings to initialize character-arrays
char color[4] = "RED";

– here the null character is appended by the compiler

• The array size can be omitted if you initialize the array elements
int digits[] = {1, 2, 3, 4, 5, 6};

– the size of digits is 6

char color[] = "RED";

– the size of color is 4

© Bhaskar Shrestha 14

One-dimensional Arrays and Strings

• Common use for the one-dimensional array is as a character string
• A string is a null-terminated character array. (A null is zero)
• A string contains the characters that make up the string followed

by a null
• When declaring a character array to hold a string, declare it to be

one character longer than the largest string that it will hold
char str[11]

– declares an array str that can hold a 10-character string

• When you use a quoted string constant in your program, you are
also creating a null-terminated string
– "hello there"
– the null is automatically added by the compiler

© Bhaskar Shrestha 15

Reading and Writing Strings
• Reading strings

– use gets or scanf
char text[80];

gets(text), scanf("
%[^\n]", text)

Reads characters until newline
encountered

scanf("%s", text);

Reads characters until whitespace
encountered

– the null character is
automatically appended

– Can write beyond end of array,
be careful

• Writing strings
– use puts or printf

puts(text);

printf("%s", text);

© Bhaskar Shrestha 16

Finding the length of a string

char text[80];
int len;
gets(text);

len = 0;
while (text[len] != '\0')

len++;

printf("The string \"%s\" has %d
characters\n", text, len);

© Bhaskar Shrestha 17

Lowercase to Uppercase Conversion

char text[80];
int i;
gets(text);

for (i=0; text[i] != '\0'; i++)
{

if (text[i]>='a' && text[i]<='z')
text[i] = text[i]-32;

}

puts(text);

© Bhaskar Shrestha 18

Copying Strings

char str1[80], str2[80];
int i;
gets(str1);

for (i=0; str1[i] != '\0'; i++)
{

str2[i] = str1[i];
}
str2[i] = '\0';

puts(str2);

© Bhaskar Shrestha 19

Concatenating Strings

char s1[80], s2[80];
int i, j, len;
gets(s1);
gets(s2);

for (len=0; s1[len] != '\0'; len++)
;

for (i=0, j=len; s2[i] != '\0'; i++, j++)
s1[j] = s2[i];

s1[j] = '\0';

puts(s1);

© Bhaskar Shrestha 20

Searching in an Array

• Specific elements of an array can be searched in one of
two ways

• Linear(Sequential) search
– Each element is compared to the key one by one
– Useful for small and unsorted arrays

• Binary Search
– Can be used only on sorted arrays
– First compares the key with the middle element of the array, if

not found one-half of the array is searched in the similar way

© Bhaskar Shrestha 21

/* Linear Search: Searching for key in an array
number of size max */

for (i = 0; i < max; i++)
{
if (key == number[i])
break;

}

if (i == max)
printf("%d was not found\n", key);
else
printf("\n%d was found at position %d", key, i);

© Bhaskar Shrestha 22

Sorting an Array

• The process of arranging the elements such that they are according
to some strict order (eg ascending/descending)

• This can be accomplished using a technique known as bubble sort
– The rearrangement will begin by scanning the entire array for the smallest

number
– This number will then be interchanged with the first number in the array,

thus placing the smallest number at the top of the list
– Next the remaining max - 1 numbers will be scanned for the smallest,

which will be exchanged with the second number
– The remaining max - 2 numbers will then be scanned for the smallest,

which will be interchanged with the third number, and so on, until the entire
array has been rearranged

© Bhaskar Shrestha 23

/* rearrange a list of max numbers */
for (item = 0; item < max – 1; item++)
/*find the smallest of all remaining elements*/
for (i = item + 1; i < max; i++)

if (number[i] < number[item])
{

/* interchange the elements */
temp = number[item];
number[item] = number[i];
number[i] = temp;

}

© Bhaskar Shrestha 24

Passing Arrays to Functions
• Passing Arrays

– To pass an array argument to a function, specify the name of the array
without any brackets
float list[100];
.....
avg = average(list,n);

– The array name is written with an empty square bracket in the formal
parameter declaration
float average(float x[], int n){}

– Name of array is address of first element

• Passing Array Elements
– Passed by call-by-value
– Pass subscripted name (i.e., list[3]) to function

© Bhaskar Shrestha 25

/* function prototype */
float average(float x[], int n);

int main()
{

int n;
float avg;
float list[100];
.....
avg = average(list,n);
.....

}

/* function definition */
float average(float x[], int n)
{

.....
}

© Bhaskar Shrestha 26

Arrays are always passed by reference

• Arrays are passed by reference

• Name of array is treated as the address of the first
element in the function
– Hence it actually becomes a pointer to the first

element of the array in the function

• Function knows where the array is stored
– Can modify original array elements passed

© Bhaskar Shrestha 27

void modify(int b, int c[]);

main() {
int b = 2;
int i, c[] = { 10, 20, 30 };
modify(b,c);
printf("b = %d\n", b);
for (i = 0; i < 3; i++)
printf("c[%d] = %d\n", i, c[i]);

}

void modify(int b, int c[])
{
int i;
b = -999;
for (i = 0; i < 3; i++)
c[i] = -9;

}

© Bhaskar Shrestha 28

String Manipulation Library Functions

• The standard C library defines a wide range of functions that
manipulate strings
– strcpy(s1,s2): Copies s2 into s1
– strcat(s1,s2): Concatenates s2 onto the end of s1
– strlen(s1): Returns number of characters in s1 excluding the terminating

null character
– strcmp(s1,s2); Returns 0 if s1 and s2 are the same; less than 0 if s1<s2;

greater than 0 if s1>s1
– strchr(s1,ch): Returns a pointer to the first occurrence of the character ch

in s1
– strstr(s1,s2): Returns a pointer to the first occurrence of s2 in s1

• All string functions use the standard header <string.h>

© Bhaskar Shrestha 29

char name[40], first[40];

printf("Enter a name: ");
gets(name);

strcpy(first, name);
while (strcmp(name,"END") != 0) {

if (strcmp(first,name) > 0))
strcpy(first, name);

printf("Enter a name: END to stop");
gets(name);

}

printf("The first is %s\n", first);

© Bhaskar Shrestha 30

Multi-dimensional Arrays

• Recall: An array is a sequence of data items that are of
the same type, that can be indexed, and that are stored
contiguously

• Each element of an array is like a single item of a
particular type

• But an array itself is an item of a particular type
– So, an array element could be another array

• An “array-of-arrays” is called “multi-dimensional”
arrays whose elements are themselves arrays
– No of subscript determines the dimension of the array

© Bhaskar Shrestha 31

Two-dimensional Arrays
• A two-dimensional array is an array of one-dimensional

arrays

• Example: int a[3][4];

An array of 3 elements, in which every element is an
array of 4 ints

• Accessing Elements
– a[1]

This gives the second element, i.e., second array (address of
first element of second array)

– a[1][2]

This gives the third integer within the second array

© Bhaskar Shrestha 32

Two-dimensional Arrays

• Think, two-dimensional arrays as tables/matrices arranged in rows
and columns

• Use first subscript to specify row no and the second subscript to
specify column no

Row 0
Row 1
Row 2

Column 0 Column 1 Column 2 Column 3

a[0][0]

a[1][0]

a[2][0]

a[0][1]

a[1][1]

a[2][1]

a[0][2]

a[1][2]

a[2][2]

a[0][3]

a[1][3]

a[2][3]

Row subscript

Array
name

Column subscript

A table with 3 rows and 4 columns

© Bhaskar Shrestha 33

Example
int a[3][4];
int i, j;

for (i = 0; i < 3; ++i)
for (j = 0; j < 4; ++j)

a[i][j] = i+j;

for (i =0; i < 3; ++i)
{

for (j = 0; j < 4; ++j)
printf("a[%d][%d] = %d ", i, j, a[i][j]);

printf("\n");
}

printf("%d\n", a[2][1]/2);
printf("%d\n", a[1][1] * (a[0][0]+2));
printf("%d\n", a[3][1]/2); /* ERROR: ? */

© Bhaskar Shrestha 34

Initialization

• List the values separated by commas and enclosed in
braces
– int a[2][3] = { 1, 2, 3, 4, 5, 6};

– The values will be assigned in the order they appear
• Initializers can be grouped with braces

– int a[2][3] = { {1, 2, 3}, {4, 5, 6}};

• If not enough, unspecified elements set to zero
– int a[2][3] = { {1, 2}, {3, 4}};

• You can leave the size for first subscript
– int a[][3] = { {1, 2}, {3, 4}};

654

321

043

021

© Bhaskar Shrestha 35

Passing Multidimensional Arrays to
Function

• Specify the array variable name, while passing it to a
function
– only the address of the first element is actually passed

• The parameter receiving the array must define the size of
all dimension, except the first one

• Any changes to array elements within the function
affects the “original” array elements

int a[3][4];
func(a);

void func(int x[][4])
{
}

Function Call Multidimensional array in parameter

© Bhaskar Shrestha 36

#define MAXROWS 10
#define MAXCOLS 20

void ReadTable(int t[][MAXCOLS], int r, int c);
void PrintTable(int t[][MAXCOLS], int r, int c);
int SumOfOddElements(int t[][MAXCOLS], int r, int c);
int SumOfEvenElements(int t[][MAXCOLS], int r, int c);

main()
{

int table[MAXROWS][MAXCOLS];
int nrows, ncols;
int oddsum, evensum;

printf("Enter no of rows and columns: ");
scanf("%d %d", &nrows, &ncols);

ReadTable(table, nrows, ncols);

oddsum = SumOfOddElements(table, nrows, ncols);
evensum = SumOfEvenElements(table, nrows, ncols);

© Bhaskar Shrestha 37

PrintTable(table, nrows, ncols);
printf("Odd sum = %d, Even sum = %d\n", oddsum,

evensum);

}

void ReadTable(int t[][MAXCOLS], int r, int c)
{

int i, j;
for (i = 0; i < r; i++)
{

printf("Enter elements for row %d\n", i+1);
for (j = 0; j < c; j++)
{

printf("Column %d: ", j+1);
scanf("%d", &t[i][j]);

}
}

}

© Bhaskar Shrestha 38

void PrintTable(int t[][MAXCOLS], int r, int c)
{

int i, j;
for (i = 0; i < r; i++)
{

for (j = 0; j < c; j++)
printf("%5d", t[i][j]);

printf("\n");
}

}

int SumOfOddElements(int t[][MAXCOLS], int r, int c)
{

int i, j;
int sum = 0;
for (i = 0; i < r; i++)

for (j = 0; j < c; j++)
if (t[i][j]%2 != 0)

sum += t[i][j];
return sum;

}

© Bhaskar Shrestha 39

Multidimensional Arrays in Memory

• Each array within a multidimensional array stored
sequentially in memory as with one-dimensional array

• For two-dimensional array, all elements in first row is
stored, then the elements of second row and so on

a[0][0] a[0][1] a[0][2] a[1][0] a[1][1] a[1][2] a[2][0] a[2][1] a[2][2]

a[0] a[1] a[2]

© Bhaskar Shrestha 40

Array of Strings

• You can create array of strings using a two-dimensional
character array
char months[12][10];

– Left dimension determines the number of strings, and right
dimension specifies the maximum length of each string

– Now you can use the array months to store 12 strings each of
which can have a maximum of 10 characters (including the
null)

– To access an individual string, you specify only the left
subscript
puts(months[2]);
prints the third month

© Bhaskar Shrestha 41

Example

\0rebmeceD

\0rebmevoN

\0rebotcO

\0rebmetpeS

\0tsuguA

\0yluJ

\0enuJ

\0yaM

\0lirpA

\0hcraM

\0yraurbeF

\0yraunaJ
char months[12][10] =
{
"January",
"February",
"March",
"April",
"May",
"June",
"July",
"August",
"September",
"October",
"November",
"December“
};
printf("%s\n", months[5]);

months[0]

months[1]

months[2]

months[3]

months[4]

months[5]

months[6]

months[7]

months[8]

months[9]

months[10]

months[11]

