
ITC213: STRUCTURED
PROGRAMMING

Bhaskar Shrestha
National College of Computer Studies

Tribhuvan University

Lecture 08: Control Statements

Readings: Chapter 6

© Bhaskar Shrestha 3

Control Statements and Their Types

• A control statement is a statement that causes a group of
C statements to execute in a manner that doesn’t relate to
the order it appears in the source code

• Types of control statements
– Selection: also known as branching created using if – else,
switch

– Repetition: also known as looping created using while, do -
while, for

– Jump: created using goto, break, continue
– Label: created using case, default, named label

© Bhaskar Shrestha 4

Selection

• A selection statement is a one in which one group of
statement is selected from several available groups,
depending on the outcome of a logical test

• C supports two selection statements: if and switch
– In addition, the ?: operator is an alternative to if in certain

circumstances

• If condition true, print statement executed and program
goes on to next statement
– If false, print statement is ignored and the program goes onto

the next statement

© Bhaskar Shrestha 5

The if statement

• Allows your program to execute a single statement, or a
block of statements enclosed between braces, if a given
condition is true

• if (expression)
statement

• If expression evaluates to true (any non-zero value),
statement is executed. If expression evaluates to
false (0), statement is not executed
– In either case, execution then passes to whatever code follows

the if statement
• expression can be any valid C expression that

produces a scalar value and statement can be simple or
compound or even another control statement

© Bhaskar Shrestha 6

Flow Chart of if

expression
is true

statement or a block
of statements

next statement

Yes

Noif (expression)
Statement;

next statement;

Or

if (expression)
{

Statement;
…

}
next statement;

© Bhaskar Shrestha 7

Examples of if

if (x > y)
y = x;

if (letter == 'A')
printf("The first capital\n");
printf("After if\n");

assigns the value of x to y only if x is
greater than y. If x is not greater than
y, no assignment takes place.

if the value of letter is 'A‘, the text The first
capital is printed otherwise not. The last
statement After if always gets printed

© Bhaskar Shrestha 8

The else clause in an if statement

• An if statement can optionally include an else clause
• if (expression)

statement1
else

statement2

• If expression evaluates to true, statement1 is
executed. If expression evaluates to false,
statement2 is executed. Both statement1 and
statement2 can be compound statements or blocks

• Using if-else, you can specify an action to be performed
both when the condition is true and when it is false

© Bhaskar Shrestha 9

Flow Chart of if-else

© Bhaskar Shrestha 10

Example of if with else clause

if (pastdue > 0)
{

printf("account no. %d is overdue", actno);
credit = 0;

}
else
credit = 1000.0;

if (age >= 18)
printf("You can vote\n");

else
printf("You can’t vote\n"); if (status == 'S')

tax = 0.20 * pay;
else
tax = 0.14 * pay;

printf("Tax: %f\n", tax);

© Bhaskar Shrestha 11

More if-else example
if (circle)
{
scanf("%f", &radius);
area = 3.14159 * radius * radius;
printf("Area of circle = %f", area);

}
else
{
scanf("%f %f", &length, &width);
area = length * width;
print("Area of rectangle = %f", area);

}
If circle is assigned a nonzero value, the radius of circle is read into
the computer; the area is calculated and then displayed. If the value
of circle is zero, however, then the length and width of rectangle are
read into the computer, the area is calculated and then displayed

© Bhaskar Shrestha 12

Nested-ifs

• A nested if is an if that is target of another if or else

• In a nested if, an else statement always refers to the
nearest if statement that is within the same block as the
else and that is not already associated with an else

if (exp1)
if (exp2)

statement1
else

statement2
else

statement3

this if

is associated with this else

this else is associated with the first if
i.e., if (exp1)

© Bhaskar Shrestha 13

Example
if(age >= 21 && (income>=80000 || balance>=200000))

if(2*income < balance/2)
loan = 2 * income;

else
loan = balance/2;

else
loan = 0.0; if (x > y)

if (x > z)
printf("x is greater");

else
printf("z is greater");

else
if (y > z)

printf("y is greater");
else

printf("z is greater");

© Bhaskar Shrestha 14

if-else-if ladder

• A common programming construct is the if–else–if
ladder because of its appearance

if (expression)
statement;

else
if (expression)

statement;
else

if (expression)
statement;

.
else

statement;

The conditions are evaluated from
the top downward. As soon as a
true condition is found, the
statement associated with it is
executed and the rest of the ladder
is bypassed. If none of the
conditions are true, the final else is
executed. If the final else is not
present, no actions take place if all
other conditions are false.

© Bhaskar Shrestha 15

if-else-if example

char ch;
scanf("%c", &ch);
if (ch >= 'a' && ch <= 'z')
printf("lowercase letter");

else if (ch >= 'A' && ch <= 'Z')
printf("uppercase letter");

else if (ch >= '0' && ch <= '9')
printf("a digit");

else if (ch==' '||ch=='\t'||ch=='\n')
printf("whitespace character");

else
printf("an unknown character");

© Bhaskar Shrestha 16

Repetition

• Repetition is the process of executing a group of
statements more than one time as long as some condition
remains true

• Repetition in C can be implemented using three control
statements: while, do – while, for

• Psuedocode:
– While there are more items on my shopping list

Purchase next item and cross it off my list

• Also known as iteration/looping statements

© Bhaskar Shrestha 17

Counter-controlled repetition

• Definite repetition: know how many times loop will
execute

• Control variable used to count repetitions
• Counter-controlled repetition requires

– The name of a control variable (or loop counter)
– The initial value of the control variable
– A condition that tests for the final value of the control variable

(i.e., whether looping should continue)
– An increment (or decrement) by which the control variable is

modified each time through the loop

© Bhaskar Shrestha 18

Example

• A class of ten students took a quiz. The grades (integers
in the range 0 to 100) for this quiz are available to you.
Determine the class average on the quiz

• Pseudocode:
– Set total to zero
– Set grade counter to one
– While grade counter is less than or equal to ten

Input the next grade
Add the grade into the total
Add one to the grade counter

– Set the class average to the total divided by ten
Print the class average

© Bhaskar Shrestha 19

The while statement

• Executes a block of statements as long as a specified
condition is true

• while (expression)
statement

• here statement is executed as long as the expression
evaluates to true.
– First expression is evaluated
– If expression is nonzero (true), then statement is executed

and control is passed back to the beginning of the while
statement, otherwise control passes to next statement following
the while statement

© Bhaskar Shrestha 20

Flowchart of while statement

while (expression)
statement

expression? statementtrue

false

© Bhaskar Shrestha 21

The while statement

• As with if, expression can be any valid C expression that
produces a scalar value and statement can be simple or
compound or may be a control statement

• The statement inside the while loop must include some feature
that eventually alters the value of the expression, thus providing
a stopping condition for the loop

/* Prints hello world 10 times */
counter = 1; /* initialization */
while (counter <= 10) /* repetition condition */
{

printf("Hello World\n");
++counter; /* increment */

}

© Bhaskar Shrestha 22

More Examples
/* Prints digits 0 through 9 */
int digit = 0;
while (digit <= 9)
{
printf("%d\n", digit);
++digit;

}

/* Prints digits 9 through 0 */
int digit = 9;
while (digit >= 0)
{
printf("%d\n", digit);
--digit;

}

© Bhaskar Shrestha 23

Example: Calculation of average grade

int grade, counter;
int total;
float average;

total = 0;
counter = 1;
while (counter <= 10)
{

printf("Enter grade: ");
scanf("%d", &grade);
total += grade;
++counter;

}
average = (float) total / 10;
printf("The average grade is %.2f\n", average);

© Bhaskar Shrestha 24

Sentinel-Controlled Repetition
• Problem :

– Develop a class-averaging program that will process an arbitrary number
of grades each time the program is run.

– Unknown number of students
– How will the program know to end?

• Use sentinel value
– Also called signal value, dummy value, or flag value
– Indicates “end of data entry.”
– Loop ends when user inputs the sentinel value
– Sentinel value chosen so it cannot be confused with a regular input (such as

-1 in this case)

© Bhaskar Shrestha 25

Example: Calculation of average grade

total = 0;
counter = 0;
printf("Enter grade (-1 to stop): ");
scanf("%d", &grade);
while (grade != -1) {

total += grade;
++counter;
printf("Enter grade (-1 to stop): ");
scanf("%d", &grade);

}
if (counter != 0) {

average = (float) total / counter;
printf("The average grade is %.2f\n", average);

}
else

printf("No grades entered\n");

© Bhaskar Shrestha 26

The for statement
• for (expr1; expr2; expr3)

statement

• First expr1 is evaluated.
• Then expr2 is evaluated.
• If expr2 is nonzero (true), then

– statement is executed,
– expr3 is evaluated
– control passes back to the beginning of the for loop again, except that

evaluation of expr1 is skipped.

• The process continues until expr2 is zero (false), at which point
control passes to next statement following the for statement

© Bhaskar Shrestha 27

Flowchart of for statement

expr1

expr2? statement

for (expr1; expr2; expr3)
statement

expr3

true

false

© Bhaskar Shrestha 28

The for statement

• Typically:
– expr1 is used to initialize the loop control variable

and is an assignment expression
– expr2 is a logical expression and represents a

condition that must be true for the loop to continue
– expr3 is used to alter the value of control variable

and is often an increment/decrement or assignment
expression

• for (counter = 1; counter <= 10; counter++)
printf("Hello World\n");

© Bhaskar Shrestha 29

Examples
/* Prints digits 0 through 9 */
for (digit = 0; digit <= 9; digit++)

printf("%d\n", digit);

/* Prints digits 9 through 0 */
for (digit = 0; digit <= 9; digit--)

printf("%d\n", digit);

/* Sum of first n natural numbers */
scanf("%d", &n);
sum = 0;
for (counter = 1; counter <= n; counter++)

sum += counter;
printf("The sum of first %d numbers is %d", n, sum);

© Bhaskar Shrestha 30

for and while loop

• Every for statement can be written in terms of
while statement and vice versa

for (expr1; expr2; expr3)
statement

expr1;
while (expr2)
{

statement
expr3;

}

© Bhaskar Shrestha 31

The do-while statement

• Similar to the while statement but condition for
repetition tested after the body of the loop is performed

• do
statement

while (expr);

– First statement is executed, and expr is evaluated

– If the value of expr is nonzero (true), then control passes back
to the beginning of the do statement and process repeats itself

– When expr is zero (false), control passes to next statement
following the do-while statement

© Bhaskar Shrestha 32

Flowchart of do-while statement

do
statement

while (expr);

expression?

statement

true

false

Note that a semicolon is
present after the closing
parenthesis of the expression

Note that statement will always
be executed at least once,
since the test for repetition
does not occur until the end of
the first pass through the loop

© Bhaskar Shrestha 33

The do-while statement

• As with while, expr can be any valid C expression that
produces a scalar value and statement can be simple or
compound or may be a control statement

counter = 1;
do {

printf("Hello World\n");
counter++;

} while (counter <= 10);

digit = 0;
do {

printf("%d\n", digit);
digit++;

} while (digit <= 9);

© Bhaskar Shrestha 34

More Examples

• The do-while statement is most appropriate when the
loop body must be executed at least once

/* Read a number that is between 1 and 99 */
/* If not, reread the number */
int n;
do
{

printf("Enter a number between 1 and 99: ");
scanf("%d", &n);

} while (n < 1 || n > 99);

© Bhaskar Shrestha 35

On Loop Statements

• Because of the features that are built into the for
statement, it is particularly well suited for loops in which
the number of passes is known in advance

• while loops should be used when the no of times the
statements inside the loop to be executed is not known in
advance

• Use do-while loop, when you want the loop body to
execute at least once for the first time regardless of the
outcome of condition

© Bhaskar Shrestha 36

Comma Operator in for statement

• Comma operator can be used for multiple initialization
and multiple processing of loop control variables in a
for statement

/* sum of numbers from 1 to n */
for (sum = 0, i = 1; i <= n; i++)

sum += i;

/*printing numbers from 1 to n, n to 1 */
for (i = 1, j = n; i <= n; i++, j--)

printf("%2d %2d\n", i, j);

© Bhaskar Shrestha 37

The 3 expressions in for statement

• You can omit, any of the three expression of the for
statement
– However, semicolons must be present

• If you omit first or third expression, nothing happens at
the time of their evaluation

• If you omit second expression, it will assume the value 1
(true) int digit = 0;

for (; digit <= 9 ;)
printf("%d\n", digit++);

© Bhaskar Shrestha 38

The switch Multiple-Selection Statement

• switch is a multiple branch
selection statement, that
successively tests the value of an
expression against a list of integer
or character constants
– When a match is found, the

statements associated with that
constant are executed.

• Useful when a variable or
expression is tested for all the
values it can assume and different
actions are taken

switch (expression)
{

case constant1:
statement sequence
break;

case constant2:
statement sequence
break;

...
case constantn:

statement sequence
break;

default:
statement sequence
break;

}

© Bhaskar Shrestha 39

The switch statement

• The expression must evaluate to an integer type
• The value of expression is tested against the constants

present in the case labels
• When a match is found, the statement sequence, if

present, associated with that case is executed until the
break statement or the end of the switch statement is
reached

• The statement sequence following default label is
executed if no matches are found
– The default label is optional, and if it is not present, no action

takes place if all matches fail

© Bhaskar Shrestha 40

Examples
choice = getchar();

switch (choice)
{

case 'r':
printf("RED");
break;

case 'w':
printf("WHITE");
break;

case 'b':
printf("BLUE");
break;

default:
printf("Unknown");

}

scanf("%d", &n);

switch (n) {

case 1:
case 2:

printf("1 or 2");
break;

case 3:
case 4:

printf(“3 or 4”);
case 5:
case 6:

printf("5 or 6?");
printf("or may be 3 or 4");

default:
break;

}

© Bhaskar Shrestha 41

Things to remember with switch

• A switch statement can only be used to test for equality
of an expression
– You cannot use relational or logical expression like in if

• switch expression must evaluate to an integral value
• No two case constants can be same
• Omission of a break statement causes execution to go to

next case label
• The statement sequence after the default label is

executed when no case constants matches the
expression value

© Bhaskar Shrestha 42

Nested Control Statements

• Loops, like while, for statements, can be nested, one
within another
– The inner and outer loops need not be generated by same type

of control structure
– It is essential, however, that one loop be completely embedded

within the other—there can be no overlap
– Each loop must be controlled by a different index

• Nested control statements can also involve both loops
and if – else statements
– Thus, a loop can be nested within an if – else statement, and

an if – else statement can be nested within a loop

© Bhaskar Shrestha 43

Examples (if nested inside loops)
/*Print numbers between 1 to n that are divisible by 3 or 5*/

scanf("%d", &n);

for (i = 1; i <= n; i++)

if (i%3==0 || i%5 == 0)

printf("%d\n",i);

/*count no of characters, excluding spaces in a line of text*/

char ch;
unsigned numchars = 0;
ch = getchar();
while (ch != ‘\n’) {

if (ch != ‘ ‘ || ch != ‘\t’)
numchars++;

ch = getchar();
}
printf(“Number of characters is %u\n”, numchars);

© Bhaskar Shrestha 44

Examples (if-else nested inside loops)

int numalpha, numother;
char ch;

numalpha=numother=0;

ch = getchar();

while (ch != '\n') {

if (ch>='A' && ch<='Z‘ || ch >= 'a' && ch <= 'z')
numalpha++;

else
numother++;

ch = getchar();
}

printf("Alphabets: %d, Other: %d", numalpha, numother);

© Bhaskar Shrestha 45

Nested for loops
/* Prints a multiplication table */

int i, j;
int size;
scanf("%d", &size);
for (i = 1; i <= size; i++) {

for (j = 1; j <= size; j++)
printf("%3d", i*j);

printf("\n");
}

/* Print the first n factorials */

int i, j, n;
long int prod;
scanf("%d", &n);
for (i = 0; i <= n; i++) {

prod = 1;
for (j = 1; j <= i; j++)

prod *= j;
printf("%d ", prod);

}

© Bhaskar Shrestha 46

Nested loops
/* average number of characters per line */

char ch;
int numchars, totalchars, numlines;
float avg;
totalchars = numlines = 0;
do {

numchars = 0;
ch = getchar();
while (ch != '\n') {

numchars++;
ch = getchar();

}
totalchars += numchars;
if (numchars > 0)

numlines++;
} while (numchars > 0);

avg = (float) totalchars/numlines;

printf(“Total lines: %d, Average: %.2f\n", numlines, avg);

© Bhaskar Shrestha 47

The break statement

• The break statement is used to exit from a while, for,
do-while or switch structure

• It can only be used inside the body of a for, while, do
– while, or switch statement

• The break statement is written simply as
break;

without any embedded expressions or statements.

• Program execution continues with the first statement
after the structure

© Bhaskar Shrestha 48

Use of break

scanf("%f", &x);
while (x <= 100) {
if (x < 0) {
printf("Error – negative value for x");
break;

}
/* process the nonnegative value of x */
.
scanf("%f", &x);

}
use break inside a while loop
if value of x is negative exit from
loop

© Bhaskar Shrestha 49

break inside nested loops

• If a break statement is used inside nested while, do –
while, for or switch statements, it will cause a transfer
of control out of inner enclosing structure

for (count = 0; count <= n; ++count)
{

.
while (c = getchar() != '\n')
{

if (c = '*') break;
.

}
}

© Bhaskar Shrestha 50

The continue statement

• Skips the remaining statements in the body of a while,
for or do-while structure
– Proceeds with the next iteration of the loop

• The continue statement can be included within a
while, a do – while or a for statement

• It is written simply as
continue;

without any embedded statements or expressions
• continue inside while and do-while

– Loop-continuation test is evaluated immediately after the
continue statement is executed

© Bhaskar Shrestha 51

The continue statement

• continue inside for
– increment expression is executed, then the loop-continuation

test is evaluated

do {
scanf("%f", &x);
if (x < 0) {

printf("ERROR – NEGATIVE VALUE FOR X");
continue;

};
/* process the nonnegative value of x */
.

} while (x <= 100);

© Bhaskar Shrestha 52

The goto statement

• The goto statement is used to alter the normal sequence
of program execution by transferring control to some
other part of the current function

• The goto statement is written as
goto label;

where label is an identifier that is used to label the
target statement to which control will be transferred

• Control may be transferred to any other statement within
the current function

© Bhaskar Shrestha 53

The goto statement

• The target statement will appear as
label: statement

• Each label statement within the current function must
have a unique name

• The use of goto should be avoided
• However, goto can helpful when you want to exit from

a doubly nested loop
– This can be done with two if-break statements, though this

would be awkward

© Bhaskar Shrestha 54

Example
scanf("%d", &x);
while (x <= 100) {

...
for (i = x - 4; i < x + 4; i++) {
...
if ((i + x) % 10 == 0)

goto errorcheck;
...

}
...

}
...
errorcheck:

printf("ERROR");
...

