
ITC213: STRUCTURED
PROGRAMMING

Bhaskar Shrestha
National College of Computer Studies

Tribhuvan University

Lecture 07: Data Input and
Output

Readings: Chapter 4

© Bhaskar Shrestha 3

Input /Output Operations

• A program needs to read data in variable names: input
operation

• Also data stored in variables need to be displayed:
output operation

• C language does not define any keyword to perform
these input/output operations

• C language provides functions to perform input/output
operations
– getchar, putchar, scanf, printf, gets and puts

• All these functions are prototyped under stdio.h

© Bhaskar Shrestha 4

Reading a Single Character through getchar

• The getchar function reads the next character available
from the standard input device (typically a keyboard)
and returns the character read
– Returns EOF when it encounters end of file

• The character returned can be assigned to a variable for
further use

• In general terms, a function reference would be written
as
variable_name = getchar();
where variable_name refers
to some previously defined
character variable

char ch;
ch = getchar();

© Bhaskar Shrestha 5

Writing a Single Character through putchar

• The putchar function can be used to write a single
character to a standard output device (typically a
monitor)

• It takes the form as shown below:
putchar(character_value)

where character_value can be a character variable or
an expression that evaluates
to a character value that
is going to be printed

ch1 = getchar();
ch2 = ch1 - 'a' + 'A';
putchar(ch2);
putchar(ch1 - 'a' + 'A');
putchar('\n');

© Bhaskar Shrestha 6

Formatted Output Function: printf

• Can be used to output data of different types in different
formats

• Can perform rounding, aligning columns, right/left
justification, inserting literal characters, exponential
format, hexadecimal format, and fixed width and
precision

• The general from of an output function is:
– printf(format-string, arg1, arg2,, argn)

Here, format-string is a string and arg1, arg2, ..., argn
are any valid C expressions

© Bhaskar Shrestha 7

Formatted Output Function: printf

• format-string describes the output format

• format-string consists of two types of items
– ordinary characters, which are exactly printed as written

– conversion specifications that define the way the subsequent
arguments are displayed

• Other-arguments (arg1, arg2, ..., argn): correspond
to each conversion specification in format-string

© Bhaskar Shrestha 8

Example

• There must be exactly the same of number of arguments
(after the format string) as there are conversion
specifications, and the conversion specifications and the
arguments are matched in order from left to right

• The arguments can be any valid expression and they
must match the data type as specified in the conversion
specification

printf("Answer x = %d \n", x);
printf("a = %d, b = %f \n", a, b);
printf("Square of %d is %d\n", a, a*a);

© Bhaskar Shrestha 9

Conversion Specifications
• Controls the type and format of the value to be printed
• Each conversion specification begins with a % and ends with a

conversion character.
• Conversion character tells the data type of the corresponding

argument
• Between the % and the conversion character there may be, in

order:
– A minus sign, which specifies left adjustment of the converted argument
– A number that specifies the minimum field width
– A period, which separates the field width from the precision
– A number, the precision: exact meaning depends on type printed
– An h if the integer is to be printed as a short, or l if as a long

© Bhaskar Shrestha 10

Conversion Characters

prints a % sign%

unsigned hexadecimal (uppercase letters)X

unsigned hexadecimal (lowercase letters)x

unsigned decimal integersu

string of characterss

unsigned octalo

uses E or f, whichever is shorterG

uses e or f, whichever is shorterg

floating-point value without an exponentf

floating-point value in scientific notation (uppercase E)E

floating-point value in scientific notation (lowercase e)e

signed decimal integersd, i

single characterc

Printed asConversion Character

© Bhaskar Shrestha 11

Printing Integers

• Only negative integers are preceded by a – sign

• To print short integers place h before the conversion character

• To print long integers place l before the conversion character
listed below

unsigned hexadecimal (uses uppercase letters, A-F)X

unsigned hexadecimal (uses lowercase letters, a-f)x

unsigned decimal integersu

unsigned octalo

signed decimal integersd, i

Corresponding Argument Printed asConversion Character

© Bhaskar Shrestha 12

Printing Floating-Point Numbers

• Use the f conversion character to print floating-point
numbers
– There is at least one digit to left of decimal
– 6 digits are printed after decimal point

• Use either e or E character to print in exponential form
• Using g or G conversion character tells print to use either
f or e whichever results in shorter output
– No trailing zeros (1.2300 becomes 1.23)

• Precede the conversion character with l to print a long
double

© Bhaskar Shrestha 13

Printing Characters and Strings

• c: Prints a char argument
– Cannot be used to print the first character of a string

• s: prints a string, argument must be a pointer to char
– Prints characters until NULL ('\0') encountered
– Cannot print a char argument

• Remember
– Single quotes for character constants ('z')
– Double quotes for strings "z" (which actually contains two

characters, 'z' and '\0')

© Bhaskar Shrestha 14

Other conversion character
• p: Displays pointer value (address)
• n: Stores number of characters already output by current printf

statement
– Takes a pointer to an integer as an argument
– Nothing printed by a %n specification

• Every printf call returns a value
– Number of characters output
– Negative number if error occurs

• %: Prints a percent sign
– %%

© Bhaskar Shrestha 15

Specifying the Minimum Field Width

• An integer placed between the % sign and the conversion character
acts as a minimum field width

• It specifies the minimum number of character position to be taken
by the output data
– If width larger than data, output will be filled with leading

spaces to reach the field width
– If output data is larger than width, it will be printed in full
– If you wish to fill with 0’s, place a 0 before the field width

specifier
printf(":%10d:",12);
printf(":%010d:",12);

: 12:
:0000000012:

© Bhaskar Shrestha 16

The Precision Specifier

• It consists of a period followed by an integer
• Its exact meaning depends upon the type of data to

which it is applied
– When applied to %f, %e, %g, it determines the number of

decimal places displayed
– When applied to %s, it specifies the maximum field length
– When applied to integers, it determines the minimum number

of digits that will appear for each number

printf("%5.2f\n", 12345.267);
printf("%3.8d\n", 1002);
printf("%10.15s\n", "This is a sample text");

© Bhaskar Shrestha 17

Justifying Output

• If the field width is larger than the data printed, the data
will be placed on the right edge of the field

• You can force output to be left justified by placing a
minus sign directly after the %

• For example, %-10.2f left justifies a floating-point
number with two decimal places in a 10-character field

printf(".........................|\n");
printf("right-justified: %8d|\n", 100);
printf(" left-justified: %-8d|\n", 100);

.........................|
right-justified: 100|
left-justified: 100 |

© Bhaskar Shrestha 18

Flags in Conversion specification
• A flag is placed immediately after % specifier
• -, 0: discussed earlier
• +: A sign (either + or -) will precede each numerical data
• # (with o and x type conversion):

– Causes octal and hexadecimal values to be preceded by 0 and 0x
respectively

• # (with f, e and g type conversion):
– Causes a decimal point to be present in all floating point numbers
– Prevents truncation of trailing zeros in g type conversion

• Space: Prints a space before a positive value not printed with +
flag

© Bhaskar Shrestha 19

Formatted Input Function: scanf

• General-purpose console input routine
• Can read all the built-in data types and automatically

convert numbers into the proper internal format
• The general form of scanf is
scanf(format-string, arg1, arg2, ..., argn)

• scanf reads characters from the standard input,
interprets them according to the specification in
format-string, and stores the results in the remaining
arguments arg1, arg2, ..., argn, each of which must
be a pointer that indicate where the corresponding
converted input should be stored

© Bhaskar Shrestha 20

Format-string
• The format string usually contains conversion specifications,

which are used to control conversion of input. The format string
may contain:
– Blanks or tabs, which are not ignored
– Ordinary characters (not %), which are expected to match the next non-

white space character of the input stream
– Conversion specifications, consisting of the character % followed by a

conversion character that determines the type of data to be read next

• A conversion specification directs the conversion of the next input
field

• Any character that cannot be interpreted according to the
conversion specification terminates the current input field, and is
put back into the input buffer. This character is then the first one
read for the next input item

© Bhaskar Shrestha 21

Conversion Character

Reads an addressp

Does not read, stores no of characters read up to the point %n was
encountered

n

Scans for a sets of characters[...]

Reads a percent sign%

Reads a strings

Reads a floating-point number (float)e, f, g

Reads a octal integero

Reads a hexadecimal integerx

Reads an unsigned decimal integeru

Reads an integer. The integer may be in octal (with leading 0) or
hexadecimal (leading 0x or 0X)

i

Reads a decimal integerd

Reads a single characterc

MeaningConversion Character

© Bhaskar Shrestha 22

Reading Integers
• To read integers, use either the %d or %i

– For %i you can enter the number either in decimal, octal or hexadecimal
form (0 must precede an octal integer and 0x or 0X must precede an octal
form)

• Use %o to read an integer in octal form and %x or %X to read in
hexadecimal form
– No need to precede with 0 or 0x

• To read unsigned integer, use %u
• scanf function stops reading a integer when the first nonnumeric

character is encountered
• To read a long integer, put an l in front of any conversion

character mentioned above
• To read a short integer, put an h in front of any conversion

character

© Bhaskar Shrestha 23

Reading floating-point values

• To read a floating-point number, use %f, %e, or %g
• Inputted number can begin with optional sign, optional

decimal point and optional exponent
• To read a double-precision number, put l before any of

the above conversion character
• To read a long double, put L before any of the above

conversion character
• As with integers, scanf stops reading when the first

invalid character is encountered

© Bhaskar Shrestha 24

Reading single characters

• Use %c to read a single character

• Although spaces, tabs and newlines are used as field
separates when reading other types of data; when
reading a single character, white-space characters are
read like any other character

• For example, with input x y, this code fragment
scanf("%c%c%c", &a, &b, &c);

stores x in a, a space in b and the character y in c

© Bhaskar Shrestha 25

Reading Strings

• Use %s to read a string
– Reads characters until it encounters a white-space character
– Characters read are put into the character array pointed to by

the corresponding argument
– The result is null terminated
– Skips leading white-spaces

• For example
char str[80];
scanf("%s", str);
If input was This is a test, str only contains This

© Bhaskar Shrestha 26

Scanset

• Set of characters enclosed in square brackets []
– Preceded by % sign

• Scans input stream, looking only for characters in scan
set
– Whenever a match occurs, stores character in specified array
– Stops scanning once a character not in the scan set is found

• Inverted scan sets
– Use a caret ^: [^aeiou]
– Causes characters not in the scan set to be stored

© Bhaskar Shrestha 27

Skipping characters

• A white-space character in format-string causes scanf
to skip one or more white-space characters

• A non-white-space character in format-string causes
scanf to read and discard matching characters in the
input

• Suppressing input
– An * placed before conversion character tells scanf to read a

field but not assign to any variable
– In effect, that input field is skipped. Such a conversion

specification corresponds to no variable argument

© Bhaskar Shrestha 28

Maximum Field Width Specifier

• An unsigned integer placed between % and conversion
character acts as a maximum field width specifier

• It indicates the maximum number of characters to be
read and converted

• The next input field begins with the first character not
yet processed

• For example
scanf("%3d%d", &a, &b);

If the input was 12345, a contains 123 and b contains 45

© Bhaskar Shrestha 29

Printing strings with puts

• The puts function writes its string argument to the screen
followed by a newline

• puts recognizes the same backslash escape sequence as printf
does, such as \t for tab

• A call to puts requires less overhead than the same call to printf
because puts can only output a string of characters—it cannot
output numbers or do format conversions

• Example
char str[] = "Hello World";
puts(str);
puts("\tWelcome!!");

Hello World
Welcome

© Bhaskar Shrestha 30

Reading strings with gets

• The gets function reads characters from input and places them
into the character array pointed by the given argument
– Characters are read until a newline or an EOF is received
– The new line character is not made part of the string; instead it is translated

into a null character to terminate the string
– Unlike using %s in scanf, gets does terminate input on white-space

character

• For example
char str[80];
gets(str);

If input was This is a test, str contains the entire string This
is a test

