
ITC213: STRUCTURED
PROGRAMMING

Bhaskar Shrestha
National College of Computer Studies

Tribhuvan University

Lecture 06: Operators and
Expressions

Readings: Chapter 3

© Bhaskar Shrestha 3

Operators and Operands

• C is very rich in built-in operators

• An operator is a symbol that instructs C to perform some
operation, or action, on one or more operands

• An operand is something that an operator acts on

• Operators that require two operands are binary operators
and operators that require one is unary

a = b + c

Operands

Operators

© Bhaskar Shrestha 4

Operators Categories

• Arithmetic Operators:
– +, -, *, /, %

• Assignment operators:
– simple (=) and compound

(+=, -=, *=, /=, etc)
• Unary Operators:

– -, ++, --, sizeof, &, *,
(type) etc

• Relational Operators:
– >, <, >= , <=,

• Equality Operators
– ==, !=

• Logical Operators:
– &&, ||, !

• Conditional Operator:
– ? :

• Bitwise Operators:
– &, |, ~

© Bhaskar Shrestha 5

Arithmetic Operators (1/2)

• C’s arithmetic operators perform mathematical operations such as
addition and subtraction

x % yGives the remainder when the first
operand is divided by the second operand

%Modulus

x / yDivides the first operand by the second
operand

/Division

x * yMultiplies two operands*Multiplication

x – ySubtracts the second operand from the
first operand

-Subtraction

x + yAdds two operands+Addition

ExampleActionSymbolOperator

© Bhaskar Shrestha 6

Arithmetic Operators (2/2)

• These operators can be applied only to operands having numeric
values
– Thus, the operands can be integers, floating-point numbers and characters

• Integer division truncates any fractional part
• The expression x % y produces the remainder when x is divided

by y, and thus is zero when y divides x exactly
– The % operator cannot be applied to a float or double

• For / and %, second operand must be nonzero
• The interpretation of % operand is unclear, when one of the

operands is negative

© Bhaskar Shrestha 7

Arithmetic Operators Example

• Suppose that a and b are integer variables and c and d are
floating-point variables. Also suppose that c1 and c2 is a character
variable. Their initial values is shown below
a = 11, b = 3, c = 12.5, d = 2.0, c1 = 'P', c2 = 'T'

06 % b2a % b

217c1 + c2 + '5'6.25c / d3a / b

169c1 + c2 + 525.0c * d33a * b

164c1 + c210.5c + d8a – b

80c114.5c + d14a + b

Result
values

ExpressionResult
values

ExpressionResult
values

Expression

© Bhaskar Shrestha 8

Type Conversion in Expressions

• When an operator has operands of different types, they are
converted to a common type according to a small number of rules

• A type conversion always conserves the original value, if the new
type is capable of representing it

• If there are no unsigned operands, the following rules apply:
– If one of operands is long double, other is converted to long double

– Else, If one of operands is double, other is converted to double

– Else, If one of operands is float, other is converted to float

– Else, If one of operands is long int, other is converted to long int

– Otherwise, convert all char and short to ints (integral promotion)

© Bhaskar Shrestha 9

Example

• Given
– int i = 7;
float f = 5.5;
char c = 'w';

float123.8(i + c) – (2 * f / 5)

int78i + c – ‘0’

int126i + c

float12.5i + f

TypeValueExpression

© Bhaskar Shrestha 10

Operators Precedence and Associativity (1/2)

• If you use more than one operator in an expression, C
uses precedence rule to find out which operator’s
calculation is to be formed

• When two operators have the same precedence, C uses
associativity rule to determine which operation is to be
carried out first

• The operators are grouped hierarchically according to
their precedence

• Operations with a higher precedence are carried out
before operations having a lower precedence

© Bhaskar Shrestha 11

Operators Precedence and Associativity (2/2)

• The five arithmetic operators are divided into two
precedence groups

– *, / and % have higher precedence than + and -

• 3 + 4 * 5 is equivalent to 3 + (4 * 5)

• Arithmetic operators are evaluated left to right

• 120 / 4 * 5 is equivalent to (120 / 4) * 5

• The natural order of evaluation can be altered through
the use of parenthesis

© Bhaskar Shrestha 12

Typecast

• The value of an expression can be converted to a different data
type if desired

• To change the type of an expression, precede the expression with
name of type enclosed in parenthesis

• For example, if i is a type int, the expression
(float)i

casts i to type float. In other words, the program makes an
internal copy of the value of i in floating-point format

• A typecast, or simply cast does not change the data type
associated with the expression itself

© Bhaskar Shrestha 13

Assignment Operators

• Assignment operators assign value of an expression to
an identifier

• The commonly used assignment operator is =
• Syntax: identifier = expression
• Example: x = y;

– assign the value of y to x
• Type Conversion in Assignments: When expression of

one type is assigned to a variable of different type, a type
conversion will occur

© Bhaskar Shrestha 14

Type Conversion in Assignments

• Conversion rule in assignment: The value of the right side
(expression side) of the assignment is converted to the type of the
left side (target variable)

Original value might be out of range for target type,
typically just the low-order bytes are copied

Bigger integer type to
smaller integer type, such
as long to short

Loss of fractional part, original value might be out of
range for target type, in which case result is
undefined

Floating-point type to
integer type

Loss of precision (significant), value might be out of
range for target type, in which case results is
undefined

Bigger floating-point type
to smaller floating-point,
such as double or float

Potential ProblemsConversion

© Bhaskar Shrestha 15

Type Conversion Example

char ch;
int x;
float f;
ch = 'a';
x = 2635;
f = 123.23;
/* All these lines are assignment statements, that causes
type conversion */
ch = x; /* the left high-order bits of x are chopped off,
leaving ch with the lower 8 bits*/
x = f; /* x will receive the non-fractional part of f */
f = ch; /* f will convert the 8-bit integer value stored in
ch to the same value in the floating-point constant*/
f = x; /* f will convert an integer value into floating point
constant */

© Bhaskar Shrestha 16

Multiple Assignment

• Multiple assignments of the form
identifier 1 = identifier 2 = ... = expression

are permissible in C
– x = y = z = 10

• The assignments are carried out from right to left
– x = (y = (z = 10));

• Assignment operators have lower precedence than other
operators and their associativity is right to left

© Bhaskar Shrestha 17

Compound Assignment

• C contains the following five additional assignment
operators; +=, -=, /=, *= and %=, often known as
compound assignment

x = x + 10 x += 10

When You Write This... It Is Equivalent To This
x *= y x = x * y
y -= z + 1 y = y – (z + 1)
a /= b a = a / b
x += y / 8 x = x + (y / 8)
y %= 3 y = y % 3

© Bhaskar Shrestha 18

Unary Operators

• Operators acting upon a single operand are unary
operators

• Unary Minus(-)
– Used to negate the value of the operand

• Increment and Decrement operators (++ and --)
– ++ operator causes its operand to be increased by 1

– -- operator causes its operand to be decreased by 1

© Bhaskar Shrestha 19

Prefix and Postfix Increment and
Decrement

• The increment/decrement operators can be written on
either side of its operand

• Prefix: the operator is written before its operand (++x)
– Increments/decrements the operand value and the resultant

value is used in the expression

• Postfix: the operator is written before its operand (x++)
– The current value of the operand is used in the expression and

its value is incremented/decremented

© Bhaskar Shrestha 20

Other Unary Operators

• The sizeof operator
– A compile time operator and, when used with an operand, it

returns the number of bytes the operand occupies
– printf("int takes %d bytes", sizeof (int));

• The address of (&) operator
– Returns the memory address of its operand
– int count;
printf("%p", &count);

• Typecast: (discussed earlier)
• Unary operators have higher precedence than arithmetic

operators and their associativity is right-to-left

© Bhaskar Shrestha 21

Relational and Equality Operators

• Relational and equality operators are used to compare expressions

x == yIs operand 1 equal to operand 2?==Equal

x != yIs operand 1 not equal to operand 2?!=Not equal

x <= yIs operand 1 less than or equal to
operand 2?

<=Less than or equal
to

x >= yIs operand 1 greater than or equal to
operand 2?

>=Greater than or
equal to

x < yIs operand 1 less than operand 2?<Less than

x > yIs operand 1 greater than operand 2?>Greater than

ExampleQuestion AskedSymbolOperator

© Bhaskar Shrestha 22

Relational and Equality Operators

• The four relational operators fall in same precedence
group and have lower precedence than arithmetic
operators and their associativity is left to right

• The two equality operators fall into a separate
precedence group, beneath the relational operators and
they also have left-to-right associavity

• The six operators are used to form relational expression
and evaluates to either true or false, of type int
– True is represented by 1 and false is represented by 0

© Bhaskar Shrestha 23

Logical Operators

• Logical operators let you combine two or more relational
expressions into a single expression that evaluates to
either true or false

False (0) if exp1 is true; true (1) if exp1
is false!exp1!NOT

True (1) if either exp1 or exp2 is true;
false (0) only if both are falseexp1 || exp2||OR

True (1) only if both exp1 and exp2 are
true; false (0) otherwiseexp1 && exp2&&AND

What It Evaluates ToExampleSymbolOperator

© Bhaskar Shrestha 24

Logical Operators

• Suppose i is an integer variable whose value is 7, f is a floating
point variable whose value is 5.5, and c is character constant that
represents the character 'w'

0 (false)!(f > 5)

0 (false)(f < 11) && (i > 100)

0 (false)(i >= 6) && (c == 199)

1 (true)(i >= 6) && (c == 'w')

What it evaluates to?Expression

© Bhaskar Shrestha 25

The Conditional Operator
• The conditional operator is C’s only ternary operator, meaning that it takes

three operands

• A conditional expression is written in the from
exp1 ? exp2 : exp3
If exp1 evaluates to true (that is, nonzero), the entire expression evaluates to
the value of exp2. If exp1 evaluates to false (that is, zero), the entire
expression evaluates as the value of exp3

z = x > y ? x : y

Assigns the value of x to z if x is greater than y
Assigns the value of y to z if x is not greater than y

© Bhaskar Shrestha 26

Operator Precedence Table

L → R,Comma operator15 (Lowest)

R → L= *= /= %= += -= &=
^= |= <<= >>=

Assignment operators14

R → L?:Conditional operator13

L → R||Logical OR12

L → R&&Logical AND 11

L → R== !=Equality Relational operators7

L → R< <= > >=Relational operators6

L → R<< >>Bitwise shift operators5

L → R+ -Arithmetic add and subtract4

L → R* / %Arithmetic multiply, divide and
remainder

3

R → L- ++ -- ! sizeof
(type) & (address of)

Unary operators 2

L → R() [] -> .1 (Highest)

AssociativityOperatorsOperator categoryPrecedence

© Bhaskar Shrestha 27

Functions

• An independent section of program code that performs a certain
task and has been assigned a name

• Every C program consists of one or more function. The one and
only required function is main()

• Two types of functions
– Library functions, which are a part of the C compiler package
– User-defined functions, which you, the programmer, create

• By referencing a function’s name, your program can execute the
code in the function

• The program also can send information, called arguments, to the
function, and the function can return information to the main part
of the program

© Bhaskar Shrestha 28

Library Functions
• Library functions perform most of the common tasks (such as screen, keyboard,

and disk input/output) your program needs

• Library functions that are functionally similar are usually grouped together as
(compiled) object programs in separate library files

Enter values from the standard input deviceintscanf(...)

Send values to the standard output deviceintprintf(...)

Return d1 raised to the d2 power.doublepow(d1, d2)

Return the natural logarithm of d.doublelog(d)

Enter a character from the standard input device.intgetchar()

Return the absolute value of d.doublefabs(d)

Return the cosine of d.double cos(d)

Return the absolute value of i.intabs(i)

Purpose Type Function

