
ITC213: STRUCTURED
PROGRAMMING

Bhaskar Shrestha
National College of Computer Studies

Tribhuvan University

Lecture 04: Introduction to C

Readings: Chapter 1.5-1.7

© Bhaskar Shrestha 3

What is C?

• C is a general-purpose, structured programming language that is
powerful, efficient and compact

• Its instructions consists of terms that resemble algebraic
expressions, supplemented by certain English keywords such as if,
else, for, and do

• Features modern flow control and data structures, and a rich set of
operators

• Contains additional features that allow it to be used at a lower
level

• Used for writing system programs and application programs

© Bhaskar Shrestha 4

History of C (1/3)
• C was developed in the 1970s by Dennis Ritchie at Bell

Labs (Murray Hill, New Jersey) in the process of
implementing the Unix operating system on a DEC
PDP-11 computer

• 1960s, CPL (Combined Programming Language),
(Barron et al., 1963)
– Purpose: to create a language that was capable of both high

level machine independent programming and would still allow
the programmer to control the behavior of individual bits of
data.

– Drawback: it was too large for use in many applications

© Bhaskar Shrestha 5

History of C (2/3)

• In 1967, BCPL (Basic CPL)
– a scaled down version of CPL while still retaining its basic

features

• In 1970, B
– Ken Thompson developed the B language, which was a scaled

down version of BCPL written specifically for use in systems
programming

• In 1972, C
– Dennis Ritchie returned some of the features found in BCPL to

the B language and developed C

© Bhaskar Shrestha 6

History of C (3/3)

• Limited to use within Bell Laboratories until 1978

• In 1978, Brian Kernighan and Dennis Ritchie produced
the first publicly available description of C in their book
titled “The C Programming Language”, now known as
the K&R C

• ANSI formed a committee in 1983 to establish a
standard definition of C, now known as ANSI C (1989)
– Updated in 1995

• New features added in 1999, now known as C99

© Bhaskar Shrestha 7

Features of C

• Small:
– C is a language of few words, containing only a handful of

terms, called keywords, which serve as the base on which the
language’s functionality is built

• Portable:
– Portable means that a C program written for one computer

system (an IBM PC, for example) can be compiled and run on
another system (a DEC VAX system, perhaps) with little or no
modification

– C provides a standard library of functions that work in the
same way on all machines

© Bhaskar Shrestha 8

Features of C

• Middle-level language
– C is often called a middle-level computer language because it

combines the best elements of high-level language with the
control and flexibility of assembly language

• Structured Language
– C allows programmer to divide program into modules
– C provides all basic control structures
– Use of subroutines that employ local variables
– Use of code block
– No use of go-to statements

© Bhaskar Shrestha 9

C Is a Programmer’s Language

• Not all computer programming languages are for programmers

• For example, COBOL was designed, in part, to enable
nonprogrammers to read and presumably (however unlikely) to
understand the program

• In contrast, C was created, influenced, and field-tested by working
programmers

• C gives the programmer what the programmer wants: few
restrictions, few complaints, block structure, stand-alone
functions, and a compact set of keywords

© Bhaskar Shrestha 10

Preparing to Program

• The Programming Process
– Determine the objective of the program
– Design your solution

• Inputs, outputs and logical steps to achieve the outputs

– Code your solution
– Compile your program

• Handling errors

– Run and Test your program

© Bhaskar Shrestha 11

Structure of a C Program

• A program is a sequence of instructions

• Instructions of a C program are written as a statement

• A statement is terminated by a semicolon (;)

• One or more statements forms a block (compound)
statement with the individual statements enclosed within
a pair of braces, i.e., { }

• All executable statements must be inside a function

© Bhaskar Shrestha 12

Structure of a C Program

• A function is where all program activity occurs

• Every C program consists of one or more functions

• Every C program must contain a special function named
main

– The statements within this function is the first one to be
executed

• Comments are written within the delimiters /* and */
– E.g., /* this is a comment */

© Bhaskar Shrestha 13

First Program: hello.c

/* A simple C program that outputs two lines of text */

#include <stdio.h> /* I/O header file */

main() /* main function heading */

{

printf("Hello, world\n"); /* call to printf */

printf("Welcome to ITC213\n");

}

© Bhaskar Shrestha 14

Comments in C

• The first line
/* A simple C program that outputs two lines of text
*/

starts with /* and ends with */
• Anything written between /* and */ is called a

comment
• Comments are not executable statements and they are

ignored by the compiler
– They have no effect on the behavior of the resulting program

• Comment serves as documentation for the human reader
of the program

© Bhaskar Shrestha 15

Preprocessor Directives (1/2)

• The line
#include <stdio.h>

is called the preprocessor directive

• Lines that begin with the # (read hash) sign are
preprocessor directives

• It is mostly written at the beginning of the program

• They are not executable code line but indications for the
C preprocessor

© Bhaskar Shrestha 16

Preprocessor Directives (2/2)

• The C preprocessor is a tool which filters your source
code before it is compiled

• In this case, it tells the compiler’s preprocessor that the
contents of the file stdio.h should be included at the
place where #include appears

• The file stdio.h is called a header file in C and it
contains the declaration needed to perform standard
input output operations

© Bhaskar Shrestha 17

The main Function (1/2)

• The next line
main()

is the first line of a function main

• The function main() is required in all C programs

• The main function is the starting point of a C program

• It is independent from whether it is at the beginning, at
the end or by the middle of the code - its content is
always the first to be executed when a program starts

© Bhaskar Shrestha 18

The main Function (2/2)

• main goes followed by a pair of parenthesis () because
it is a function

• In C, all functions are followed by a pair of parenthesis
() that, optionally, can include arguments within

• The content of the main function follows immediately to
its header enclosed between braces {}, as in our example

• The code inside the braces {} are program statements
that are to be executed

© Bhaskar Shrestha 19

Main Function Body (1/2)

• The first statement
printf("Hello, world\n");

causes the text Hello, world, enclosed in quotes, to be
printed in the standard output device (often known as the
console)

• Here, printf is a C function that outputs the text
– Anything written within the quotes is printed

• The printf function is defined in the file stdio.h

© Bhaskar Shrestha 20

Main Function Body (2/2)

• Here \n is a nonprinting character and is one of the
escape sequence of C

• \n tells to print a new line which causes the next text to
be printed on next line

• Hence, the next printf causes the text Welcome to
ITC213 to be printed on next line

• The closing brace } at the last line program signifies the
end of the main() function and hence the end of
program

© Bhaskar Shrestha 21

The Build Process

• An editor is a specialized word processor used to prepare source
modules in the language of choice (e.g. C, C++, Java, Fortran)

• The preprocessor adds in standard pre-written code (boilerplate)
from include files you specify to produce a complete source
module

• The compiler produces object code for the target computer/
operating system

• The linker ties multiple modules together into a complete program
• An executable file is a program that will run on the computer. The

editor, preprocessor, compiler and linker are all executables. So is
your program

© Bhaskar Shrestha 22

The Build Process
Editor

Source File

Executable File

Preprocessor

Source File

Compiler

Object File
Other object

Files
Library
Files

Linker

Include Files

© Bhaskar Shrestha 23

Compilation and Linker Errors

• A compilation error occurs when the compiler finds
something in the source code that it can’t compile
– A misspelling, typographical error, or any of a dozen other

things can be a cause

• Linker errors are relatively rare and usually result from
misspelling the name of a C library function
– In this case, you get an Error: undefined symbols: error

message, followed by the misspelled name (preceded by an
underscore)

© Bhaskar Shrestha 24

Another Example
/* Program to find the area and perimeter of a rectangle

given its width and height */

#include <stdio.h>

main()

{

int width, length; /* variable declaration */
int area, perimeter;

width = 5; /* assign the value 5 to the variable width */
length = 7; /* assign the value 7 to the variable length */

area = width*length; /* calculate the area */
perimeter = 2*(width+length); /* calculate the perimeter */

/* Print the results */
printf("Area is %d\n", area);
printf("Perimeter is %d\n", perimeter);

}

	ITC213: STRUCTURED PROGRAMMING
	Lecture 04: Introduction to C
	What is C?
	History of C (1/3)
	History of C (2/3)
	History of C (3/3)
	Features of C
	Features of C
	C Is a Programmer’s Language
	Preparing to Program
	Structure of a C Program
	Structure of a C Program
	First Program: hello.c
	Comments in C
	Preprocessor Directives (1/2)
	Preprocessor Directives (2/2)
	The main Function (1/2)
	The main Function (2/2)
	Main Function Body (1/2)
	Main Function Body (2/2)
	The Build Process
	The Build Process
	Compilation and Linker Errors
	Another Example

