
ITC213: STRUCTURED
PROGRAMMING

Bhaskar Shrestha
National College of Computer Studies

Tribhuvan University

Lecture 03: Program
Development Life Cycle

Readings: Not Covered in Textbook

© Bhaskar Shrestha 3

Program Development Life Cycle

• Creating new programs is called program development

• The process associated with creating successful
applications programs is called the program
development life cycle (PDLC)

• It includes a set of activities which produce application
programs

• There are various approaches in program development
each with different perspectives

© Bhaskar Shrestha 4

Waterfall model

• The first published model of program development
process was derived from other engineering process
(Royce, 1970)

• It is a multistage model with each stage concerned with
separate activities of program development

• Each stage in the model follows a linear sequence one
after another, often with feedback loops

• Also known as classic life cycle, linear sequential model

© Bhaskar Shrestha 5

Waterfall Model

Problem Analysis

Program Design

Coding

Testing

Maintenance

© Bhaskar Shrestha 6

Problem Analysis: Define the Problem
(1/2)

• The stage begins with reviewing the program
specifications indicating what the new system should do

• During this stage, the systems analyst and programmer
review the specifications and possibly talk with users in
order to fully understand what the software should do.

• Documentation resulting from this phase consists of the
program specifications, timetable, which language will
be used, how the program will be tested, and what
documentation is required

© Bhaskar Shrestha 7

Problem Analysis: Define the Problem
(2/2)

• The program services, constraints and objectives are
established by consultation with system users

• Consists of the following tasks:
– Define Objectives of the Program
– Determine desired outputs
– Determine input requirements
– Determine processing requirements
– Evaluate feasibility of the program
– Document the analysis

© Bhaskar Shrestha 8

Program Design: Outline the Solution

• During program design, the specifications are used to express the
algorithm needed to solve the problem, usually in the form of any
number of program design tools

• Program Design Tools
– Structure charts
– Flowcharts
– Pseudocode
– Data modeling

• Documentation from the program design step includes all the
design specifications (flowcharts, pseudocode, etc.)

© Bhaskar Shrestha 9

Structure Charts and Data Modeling

• Structure charts depict the overall organization of a program,
and how the modules of a program—logically related operations
that perform a well-defined task—are defined and how they
connect to each other hierarchically

• Program modules should be arranged hierarchically, in a top-down
fashion, so that their relationship to each other is apparent

• Data modeling is a technique used to illustrate the data in an
application and is frequently used with object-oriented
programming

• In a data model, the objects in the program are identified, along
with their variables and class

© Bhaskar Shrestha 10

Structured Programming

• Today most programmers use a design approach called structured
programming

• Structured programming takes a top-down approach that breaks
programs into modular forms

• It uses standard logic tools called control structures
• Developed by Bohm and Jacopini
• Key design considerations

– Top down design
– Modular design
– Structure Theorem

© Bhaskar Shrestha 11

Top-down Design

• Top-down program design proceeds by identifying the function of
the program and then breaking it down, in hierarchical fashion, to
specify the processing steps, or modules, required to perform that
function, down to the lowest level of detail
– Start with what you want

– Break it into parts

– If the parts are non trivial then

• apply top-down again

– else

• Design is done

© Bhaskar Shrestha 12

Example

• Top-down program design can be represented graphically in a
hierarchy chart

Compute
deductions

Compute
credits

Compute adjusted
gross income

Compute
adjustments

Compute
Income

Interest &
dividends

Wages Capital
gains

Business
income

Misc.
Income

Compute Tax

© Bhaskar Shrestha 13

Modular Design

• Modularization simplifies program design by allowing
the individual program modules to be developed and
tested separately

• Groups tasks which perform the same function
• A module (sometimes called a subprogram or a

subroutine) is a self-contained processing step,
consisting of logically related program statements

• It is best if each module has only a single function, just
as an English paragraph should have a single, complete
thought

© Bhaskar Shrestha 14

Structured Theorem

• Advocates of structured programming have shown that any
program can be constructed out of three fundamental control
structures: sequence, selection, and iteration

• A control structure, or logic structure, controls the logical
sequence in which computer program instructions are executed
– A sequence control structure is simply a series of procedures that follow

one another.
– The selection control structure involves a choice: It offers two or more

paths to follow at points in the program where a decision must be made
– An iteration is an operation that repeats until a certain condition is met

• Eliminates the GOTO (used in unstructured programming)

© Bhaskar Shrestha 15

Structured Programming

• The point of structured programming is to make
programs more efficient and better organized (more
readable), and to have better notations so that they have
clear and correct descriptions

• In structured programming, the program is designed in
three mini-steps:
– Determine the Program Logic, Using a Top-Down Approach
– Design Details, Using Pseudocode, Flowcharts, and Control

Structures
– Do a Structured Walkthrough

© Bhaskar Shrestha 16

Structured Walkthrough

• In the structured walkthrough, a programmer leads other
people in the development team through a design
segment

• The structured walkthrough, the final part of the design
phase, consists of a formal review process in which
others—fellow programmers, systems analysts, and
perhaps users

• The team reviews the segment of the program for errors,
omissions, and duplications in the processing tasks

• Because the whole program is still on paper at this point,
these matters are easier to correct than they will be later

© Bhaskar Shrestha 17

Coding: Code the Program

• Once the design has been developed and reviewed in a
walkthrough, the next step is the actual writing of the
program, called coding

• Coding consists of translating the logic requirements
from pseudocode or flowcharts into a programming
language—the letters, numbers, and symbols arranged
according to syntax rules (language rules) that make up
the program.

• The program coding stage results in finished source
code, which includes enough internal documentation to
make the source code understandable and easy to update

© Bhaskar Shrestha 18

Coding: Code the Program

• One of the first steps in the coding process is deciding
which programming language to use

• Languages for specific applications are often chosen
with respect to such criteria as suitability, compatibility
with other applications, organizational standards,
programmer availability, portability, and speed

• For a program to work, you have to follow the syntax,
the rules of the programming language that specify how
words and symbols are put together

© Bhaskar Shrestha 19

Coding: Code the Program

• Many organizations enforce rules called coding
standards to standardize programming styles and make
programs more universally readable and easier to
maintain

• Reusable code refers to code segments that can be used
over and over again, by several programs
– The idea behind reusable code is that programs will take less

time to write and contain fewer errors if error-free, reusable-
code modules can be stitched together to form programs

© Bhaskar Shrestha 20

Testing (1/3)

• Once a program is coded, it must be tested for its
correctness

• Program testing involves running various tests
– 1. Perform Desk-Checking:

• Desk-checking is simply reading through, or checking, the program to
make sure that it’s free of errors and that the logic works.

• In other words, desk-checking is like proofreading.

• This step should be taken before the program is actually run on a
computer

© Bhaskar Shrestha 21

Testing (2/3)

• 2. Debug the Program:
– Debugging means detecting, locating, and removing all errors

in a computer program

– Mistakes may be in syntax errors or logic errors:
• Syntax errors are caused by typographical errors and incorrect use of

the programming language. These are the easiest bugs to fix.
Debugging utility programs (sometimes called diagnostics) check
program syntax and display syntax-error messages.

• Logic errors are caused by incorrect use of control structures resulting
in incorrect program results.

© Bhaskar Shrestha 22

Debugging Tools

• Many compilers provide the programmer with
debugging tools, such as displaying informative error
messages indicating the source of many of the errors,
colored-coded source code, etc

• Temporary dummy output statements can be used to
help identify where program execution goes and display
the values of loop counters and other key variables

© Bhaskar Shrestha 23

Testing (3/3)
• 3. Run Real-World Data:

– After desk-checking and debugging, the program may run fine—in the
laboratory.

– However, it then needs to be tested with real data, called beta testing
– It’s mandatory to test with bad data—data that is faulty, incomplete, or in

overwhelming quantities—to see if you can make the system crash.
– The testing process may involve several trials using different test data

before the programming team is satisfied the program can be released

• The documentation resulting from this step includes a copy of the
finished program code, plus test data and results

© Bhaskar Shrestha 24

Documentation & Maintenance (1/2)

• Preparing documentation is the fifth step in
programming.

• The resulting documentation consists of written, graphic,
and electronic descriptions of what a program is and how
to use it.

• Documentation is needed for everyone who will be
involved with the program
– Preparing User Documentation
– Prepare Operator Documentation
– Write Programmer Documentation

© Bhaskar Shrestha 25

Documentation & Maintenance (2/2)

• Virtually every program, if it is to last a long time,
requires ongoing maintenance.

• Program maintenance is the process of updating software
so that it continues to be useful

• It is a costly process, but can be used to extend the life of
a program

• Documentation resulting from this step consists of the
amended program package reflecting what problems
occurred and what program changes were performed

© Bhaskar Shrestha 26

Tools for Facilitating Program
Development

• Program development tools can be used to
facilitate the program development process

• An application generator enables both
programmers and end users to code new
applications quickly
– Common examples are wizards, macro languages,

report generators, form generators, graphics
generators, and code generators.

© Bhaskar Shrestha 27

Tools for Facilitating Program
Development

• The basic strategy of computer-aided software
engineering (CASE) tools is to automate one or more
steps of applications software development
– All CASE tools are different, but many contain such features

as action-diagram editors, fourth-generation-language
programming, code generators, reusable-code-management
routines, and active data dictionaries

• Rapid application development (RAD) refers to a group
of tools that enable software development to take place
during the entire program development process
– RAD tools provide CASE-like assistance for developing user

interfaces, preparing code for reuse, etc

© Bhaskar Shrestha 28

Programming Paradigms: Procedural
Programming

• Procedural Programming is based upon the concept of
the modularity

• A main procedural program is composed of one or more
modules. Each module is composed of one or more
subprograms.

• Procedural code
– is easier to read and more maintainable
– is more flexible
– facilitates the practice of good program design

© Bhaskar Shrestha 29

Programming Paradigms: Declarative
and Object oriented Programming

• Declarative programming
– describes to the computer a set of conditions and
– lets the computer figure out how to satisfy them

• Object oriented programming
– A computer program is composed of a collection of individual

units, called objects.
– Operations are provided for each class of objects.
– Operations change the state of an object.
– To make the overall computation happen, the objects interact

through their own operations and their own data

© Bhaskar Shrestha 30

Example languages for Different
Paradigms

• Procedural
– C, Pascal, Basic, FORTRAN, COBOL, Ada…

• Declarative
– LISP, Prolog, …

• Objected oriented
– Smalltalk, Java, C++, …

	ITC213: STRUCTURED PROGRAMMING
	Lecture 03: Program Development Life Cycle
	Program Development Life Cycle
	Waterfall model
	Waterfall Model
	Problem Analysis: Define the Problem (1/2)
	Problem Analysis: Define the Problem (2/2)
	Program Design: Outline the Solution
	Structure Charts and Data Modeling
	Structured Programming
	Top-down Design
	Example
	Modular Design
	Structured Theorem
	Structured Programming
	Structured Walkthrough
	Coding: Code the Program
	Coding: Code the Program
	Coding: Code the Program
	Testing (1/3)
	Testing (2/3)
	Debugging Tools
	Testing (3/3)
	Documentation & Maintenance (1/2)
	Documentation & Maintenance (2/2)
	Tools for Facilitating Program Development
	Tools for Facilitating Program Development
	Programming Paradigms: Procedural Programming
	Programming Paradigms: Declarative and Object oriented Programming
	Example languages for Different Paradigms

