
ITC213: STRUCTURED
PROGRAMMING

Bhaskar Shrestha
National College of Computer Studies

Tribhuvan University

Lecture 01: Programming
Languages

Readings: Chapter 1.1 - 1.4

© Bhaskar Shrestha 3

Some Key Terms (1/2)

• Computer needs a set of instructions to process data
• A program is a sequence of instructions for a computer

to perform
• Software, for our purposes, is just a term meaning

programs
• What Kinds of Instructions?

– Input/Output (I/O)
– Arithmetic & logical calculation
– Decisions
– Repetitions

© Bhaskar Shrestha 4

Some Key Terms (2/2)

• A programming language is a well-defined set of rules
for specifying a program’s sequence of instructions.
– Examples: C, C++, Fortran 90, Java, Basic, HTML, Perl,

Haskell, Prolog, Pascal, etc.

• Source code is a sequence of instructions, written in a
human-readable programming language, that constitute
a program, or a piece of a program

• A source file is a file of source code

© Bhaskar Shrestha 5

Programming Languages
• A language is a system of communication
• A programming language consists of all the symbols, characters,

and usage rules that permit people to communicate with
computers

• There are at least several hundred, and possibly several thousand,
different programming languages and dialects
– Some of these are created to have a special purpose (controlling a robot),

while others are more flexible general-purpose tools that are suitable for
many types of applications

• However, every programming language have instructions that fall
into the familiar input/output, calculation/text manipulation,
logic/comparison, and storage/retrieval categories

© Bhaskar Shrestha 6

Types of Programming Languages

• Even though all programming languages have an instruction set
that permits these familiar operations to be performed, there’s a
marked difference to be found in the symbols, characters, and
syntax of them

• Programming languages are said to be lower or higher, depending
on whether they are closer to the language the computer itself uses
(lower, which means 0s and 1s) or to the language that people use
(higher, which means more English like)

© Bhaskar Shrestha 7

Programming Languages:
Levels/Generations

• We shall consider five levels (or generations) of
programming languages
– Machine Languages / First-generation languages
– Assembly Languages / Second-generation languages
– Procedural Languages / Third-generation languages
– Problem-oriented Languages / Fourth-generation languages
– Natural Languages / Fifth-generation languages

© Bhaskar Shrestha 8

Machine Languages (First Generation)

• A computer’s machine language consists of strings of
binary numbers (0s and 1s) and is the only one the
processor directly “understands”

• An instruction prepared in any machine language will
have at least two parts
– The first part is the command or operation, and it tells the

computer what function to perform. Every computer has an
operation code, or “op code”, for each of its functions

– The second part of the instruction is the operand, and it tells
the computer where to find or store the data or other
instructions that are to be manipulated

© Bhaskar Shrestha 9

Examples

• The number of operands in an instruction varies among
computers

• In a single-operand machine, the binary equivalent of
“ADD 0184” could cause the value in storage location or
address 0184 to be added to a value stored in the
arithmetic-logic unit

• For example, the instruction “ADD 0184” for an early
IBM machine can be written as:
– 000100000000000000000000000010111000

© Bhaskar Shrestha 10

Machine Languages: Advantages and
Disadvantages

• Advantages
– Its execution is very fast and efficient because the computer

can accept the machine code as it is

• Disadvantages
– A programmer has to remember dozens of code numbers for

the commands in the machine’s instruction set.

– One has to keep track of the storage locations of data and
instructions

– Programs written in machine language for one computer model
will not, in all likelihood, run on a different model computer

© Bhaskar Shrestha 11

Assembly Languages (1/2)

• Assembly languages, also known as symbolic languages
uses abbreviations or mnemonic (pronounced ne-mon’-
ik) code — code more easily memorized — that replace
the 0s and 1s of machine languages

• In an assembly language, the instruction
000100000000000000000000000010111000
could be expressed as
ADD 0184

© Bhaskar Shrestha 12

Assembly Languages (2/2)

• Actually, assembly languages do not replace machine
languages

• In fact, for an assembly language program to be
executed, it must be converted to machine code

• An assembler, which is itself a program, enables the
computer to convert the programmer’s assembly
language instructions into its own machine code

• The assembly language program is referred to as a
source program whereas, the machine language
program is an object program

© Bhaskar Shrestha 13

Assembly Languages:
Advantages/Disadvantages

• Assembly languages have advantages over machine languages
– They save time and reduce detail

– Fewer errors are made, and those that are made are easier to find.

– And assembly programs are easier for people to modify than machine
language programs

• But there are limitations
– Coding in assembly language is still time consuming

– And a big drawback of assembly languages is that they are machine
oriented. That is, they are designed for the specific make and model of
processor being used

© Bhaskar Shrestha 14

High Level Languages
• High-level languages assist programmers by reducing the number

of computer operation details they have to specify, so that they
can concentrate more on the logic needed to solve the problem

• High-level languages are often oriented toward a particular class
of processing problems
– For example, a number of languages have been designed to process

scientific-mathematic problems, and other languages have appeared that
emphasize file processing application.

• Unlike assembly programs, high-level language programs may be
used with different makes of computers with little modification.
– Thus reprogramming expense may be greatly reduced

© Bhaskar Shrestha 15

Compilers

• Naturally, a source program written in a high-level language must
also be translated into machine-usable code

• There are two kinds of translators — compilers and interpreters —
and high-level languages are called either compiled languages or
interpreted languages.

• In a compiled language, a translation program, known as
compiler, is run to convert the programmer’s entire high-level
program, which is called the source code, into a machine
language code. This translation process is called compilation.

• The machine language code is called the object code and can be
saved and either run (executed) immediately or later

© Bhaskar Shrestha 16

Interpreters

• In an interpreted language, a translation program, known as
interpreter, converts each program statement into machine code
just before the program statement is to be executed

• Translation and execution occur immediately, one after another,
one statement at a time.

• Unlike the compiled languages, no object code is stored and there
is no compilation. This means that in a program where one
statement is executed several times (such reading an employee’s
payroll record), that statement is converted to machine language
each time it is executed

© Bhaskar Shrestha 17

Compiled Vs Interpreted Languages

• Compiled languages programs are better than
interpreted languages programs as they can be
executed faster and more efficiently once the
object code has been obtained

• On the other hand, interpreted languages
programs do not generate object code and so are
usually easier to code and test

© Bhaskar Shrestha 18

Types of High-Level Languages

• Languages are often referred to as generations, the idea
being that machine languages were the first generation
and assembly languages were the second generation

• High-level languages are sometimes used to refer all
languages above the assembly level

• Here we will subdivide languages into three generations.
– Procedural-oriented or third generation
– Problem-oriented or fourth generation
– Natural or fifth generation

© Bhaskar Shrestha 19

Procedural-Oriented Languages

• High-level languages are often classified according to whether
they solve general problems or specific problems

• General purpose programming languages are called procedural
languages or third generation languages

• They are languages such as Pascal, BASIC, COBOL and
FORTRAN, which are designed to express the logic, the
procedure, of a problem

• Because of their flexibility, procedural languages are able to solve
a variety of problems

© Bhaskar Shrestha 20

Advantages

• Advantages over machine and assembly languages
– The program statements resemble English and hence are easier

to work with

– Because of their English-like nature, less time is required to
program a problem

– Once coded, programs are easier to understand and to modify

– The programming languages are machine-independent

• Disadvantages
– Programs execute more slowly

© Bhaskar Shrestha 21

Fourth Generation Languages

• Third generation languages, such as BASIC or Pascal,
require you to instruct the computer in step-by-step
fashion

• Fourth generation languages, also known as problem-
oriented languages, are high-level languages designed to
solve specific problems or develop specific applications
by enabling you to describe what you want rather than
step-step procedures for getting there

© Bhaskar Shrestha 22

Classification of 4GLs

• Personal computer applications software

• Query languages and report generators

• Decision support systems and financial planning
languages

• Application Generators

© Bhaskar Shrestha 23

Fifth Generation Languages

• Natural languages are still in the developmental stages

• They promise to have profound effect, particularly in the
areas of artificial intelligence and expert systems

• The are designed to make the connections that humans
have with computers more natural — more humanlike

• They are designed to allow the computer to become
“smarter” — to actually simulate the learning process by
remembering and improving upon earlier informationm

© Bhaskar Shrestha 24

Programming in Early Computers

• In the beginning, Charles Babbage’s difference engine could only
be made to execute tasks by changing the gears which executed
the calculations

• Thus, the earliest form of a computer language was physical
motion

• Eventually, physical motion was replaced by electrical signals
when the US Government built the ENIAC in 1942

• It followed many of the same principles of Babbage's engine and
hence, could only be “programmed” by presetting switches and
rewiring the entire system for each new "program" or calculation.
This process proved to be very tedious

© Bhaskar Shrestha 25

FORTRAN

• FORTRAN, which originally stood for IBM
Mathematical FORmula TRANslation System but has
been abbreviated to FORmula TRANslation, is the
oldest of the established high-level languages

• Designed by a group headed by John Backus in IBM
during the late 1950s

• It has been widely accepted had has been revised a
number of times
– FORTRAN has seen a number of significant versions: II, IV,

66, 77, 90

© Bhaskar Shrestha 26

Example Program
• * SIMPLE PAY IN FORTRAN 77

INTEGER HOURS, PAY
READ *, HOURS
IF (HOURS .LE. 40) THEN
PAY = 10 * HOURS
ELSE
PAY = 10 * 40 + 15 * (HOURS - 40)
ENDIF
PRINT *, 'Gross pay is ', PAY
END

• In Fortran, a line that starts with an * is a comment, corresponding to a line that
starts with REM in Basic. Fortran also uses the * as the symbol for
multiplication, and to refer to the keyboard and screen in the READ and PRINT
statement

© Bhaskar Shrestha 27

COBOL
• Common Business Oriented Language
• COBOL was designed from the ground up as the language for

businessmen
• Its only data types were numbers and strings of text
• It also allowed for these to be grouped into arrays and records, so

that data could be tracked and organized better
• COBOL statements also have a very English-like grammar,

making it quite easy to learn
• All of these features were designed to make it easier for the

average business to learn and adopt it

© Bhaskar Shrestha 28

BASIC

• BASIC (Beginners’s All Purpose Symbolic
Instruction Code) was originally developed at
Dartmouth College by John Kemeny and Thomas
Kurtz in the mid-1960s

• Because of its simplicity, it was adopted by
several commercial time-sharing services, which
caused it to receive a broad

© Bhaskar Shrestha 29

Pascal
• Pascal developed by Niklaus Wirth in 1968
• Its development was mainly out of necessity for a good teaching

tool
• In the beginning, the language designers had no hopes for it to

enjoy widespread adoption
• Instead, they concentrated on developing good tools for teaching

such as a debugger and editing system and support for common
early microprocessor machines which were in use in teaching
institutions

• Pascal was designed in a very orderly approach, it combined many
of the best features of the languages in use at the time, COBOL,
FORTRAN, and ALGOL

© Bhaskar Shrestha 30

Example
• PROGRAM SimplePay(INPUT, OUTPUT);

{ Simple pay in Pascal }
VAR
hours, pay: INTEGER;
BEGIN
Read(hours);
IF hours <= 40 THEN
pay := 10 * hours
ELSE
pay := 10 * 40 + 15 * (hours - 40);
Writeln('Gross pay is ', pay:6);

• Comments in Pascal are enclosed in braces, { and }

© Bhaskar Shrestha 31

Other Languages (1/2)

• Lisp(LISt Processor), developed by John McCarthy about 1960, is
a language based on mathematical concepts. Its objective is the
processing of data represented as lists of items. It is mainly used
in artificial intelligence applications.

• APL (A Programming Language), developed by Kenneth Iverson
in 1962, is a programming language that uses a very esoteric
mathematical notation.

• Algol 60: for scientific computation and for the communication of
algorithms between computer scientists

• C: created at the Bell Laboratories in the early 1970s when low
level access to the machine was considered important

© Bhaskar Shrestha 32

Other Languages (2/2)

• Logo: for the introduction of the principles of computer
programming to children through graphical manipulations,

• PL/I: a large language intended to be suitable for all applications,
• Prolog: for logic programming used, for example, to automate the

proving of theorems,
• Simula 67: for the simulation of networks of discrete events,
• Smalltalk: for a style of programming where data takes an active

rather than passive role; this is known as object programming

© Bhaskar Shrestha 33

Current Generations
• HTML

– web page mark up language

• Java
– write and compile anywhere, run anywhere

• JavaScript, Jscript
– dynamic web page

• Perl
– server side processing

• XML
– eXtensible mark up language
– include data definition as well as presentation

	ITC213: STRUCTURED PROGRAMMING
	Lecture 01: Programming Languages
	Some Key Terms (1/2)
	Some Key Terms (2/2)
	Programming Languages
	Types of Programming Languages
	Programming Languages: Levels/Generations
	Machine Languages (First Generation)
	Examples
	Machine Languages: Advantages and Disadvantages
	Assembly Languages (1/2)
	Assembly Languages (2/2)
	Assembly Languages: Advantages/Disadvantages
	High Level Languages
	Compilers
	Interpreters
	Compiled Vs Interpreted Languages
	Types of High-Level Languages
	Procedural-Oriented Languages
	Advantages
	Fourth Generation Languages
	Classification of 4GLs
	Fifth Generation Languages
	Programming in Early Computers
	FORTRAN
	Example Program
	COBOL
	BASIC
	Pascal
	Example
	Other Languages (1/2)
	Other Languages (2/2)
	Current Generations

